Skip to content

Latest commit

 

History

History
416 lines (366 loc) · 10.7 KB

File metadata and controls

416 lines (366 loc) · 10.7 KB

English Version

题目描述

n 个盒子。给你一个长度为 n 的二进制字符串 boxes ,其中 boxes[i] 的值为 '0' 表示第 i 个盒子是 的,而 boxes[i] 的值为 '1' 表示盒子里有 一个 小球。

在一步操作中,你可以将 一个 小球从某个盒子移动到一个与之相邻的盒子中。第 i 个盒子和第 j 个盒子相邻需满足 abs(i - j) == 1 。注意,操作执行后,某些盒子中可能会存在不止一个小球。

返回一个长度为 n 的数组 answer ,其中 answer[i] 是将所有小球移动到第 i 个盒子所需的 最小 操作数。

每个 answer[i] 都需要根据盒子的 初始状态 进行计算。

 

示例 1:

输入:boxes = "110"
输出:[1,1,3]
解释:每个盒子对应的最小操作数如下:
1) 第 1 个盒子:将一个小球从第 2 个盒子移动到第 1 个盒子,需要 1 步操作。
2) 第 2 个盒子:将一个小球从第 1 个盒子移动到第 2 个盒子,需要 1 步操作。
3) 第 3 个盒子:将一个小球从第 1 个盒子移动到第 3 个盒子,需要 2 步操作。将一个小球从第 2 个盒子移动到第 3 个盒子,需要 1 步操作。共计 3 步操作。

示例 2:

输入:boxes = "001011"
输出:[11,8,5,4,3,4]

 

提示:

  • n == boxes.length
  • 1 <= n <= 2000
  • boxes[i]'0''1'

解法

方法一:预处理 + 枚举

我们可以预处理出每个位置 $i$ 左边的小球移动到 $i$ 的操作数,记为 $left[i]$;每个位置 $i$ 右边的小球移动到 $i$ 的操作数,记为 $right[i]$。那么答案数组的第 $i$ 个元素就是 $left[i] + right[i]$

时间复杂度 $O(n)$,空间复杂度 $O(n)$。其中 $n$boxes 的长度。

我们还可以进一步优化空间复杂度,只用一个答案数组 $ans$ 以及若干个变量即可。

时间复杂度 $O(n)$,忽略答案数组的空间消耗,空间复杂度 $O(1)$。其中 $n$boxes 的长度。

Python3

class Solution:
    def minOperations(self, boxes: str) -> List[int]:
        n = len(boxes)
        left = [0] * n
        right = [0] * n
        cnt = 0
        for i in range(1, n):
            if boxes[i - 1] == '1':
                cnt += 1
            left[i] = left[i - 1] + cnt
        cnt = 0
        for i in range(n - 2, -1, -1):
            if boxes[i + 1] == '1':
                cnt += 1
            right[i] = right[i + 1] + cnt
        return [a + b for a, b in zip(left, right)]
class Solution:
    def minOperations(self, boxes: str) -> List[int]:
        n = len(boxes)
        ans = [0] * n
        cnt = 0
        for i in range(1, n):
            if boxes[i - 1] == '1':
                cnt += 1
            ans[i] = ans[i - 1] + cnt
        cnt = s = 0
        for i in range(n - 2, -1, -1):
            if boxes[i + 1] == '1':
                cnt += 1
            s += cnt
            ans[i] += s
        return ans

Java

class Solution {
    public int[] minOperations(String boxes) {
        int n = boxes.length();
        int[] left = new int[n];
        int[] right = new int[n];
        for (int i = 1, cnt = 0; i < n; ++i) {
            if (boxes.charAt(i - 1) == '1') {
                ++cnt;
            }
            left[i] = left[i - 1] + cnt;
        }
        for (int i = n - 2, cnt = 0; i >= 0; --i) {
            if (boxes.charAt(i + 1) == '1') {
                ++cnt;
            }
            right[i] = right[i + 1] + cnt;
        }
        int[] ans = new int[n];
        for (int i = 0; i < n; ++i) {
            ans[i] = left[i] + right[i];
        }
        return ans;
    }
}
class Solution {
    public int[] minOperations(String boxes) {
        int n = boxes.length();
        int[] ans = new int[n];
        for (int i = 1, cnt = 0; i < n; ++i) {
            if (boxes.charAt(i - 1) == '1') {
                ++cnt;
            }
            ans[i] = ans[i - 1] + cnt;
        }
        for (int i = n - 2, cnt = 0, s = 0; i >= 0; --i) {
            if (boxes.charAt(i + 1) == '1') {
                ++cnt;
            }
            s += cnt;
            ans[i] += s;
        }
        return ans;
    }
}

C++

class Solution {
public:
    vector<int> minOperations(string boxes) {
        int n = boxes.size();
        int left[n];
        int right[n];
        memset(left, 0, sizeof left);
        memset(right, 0, sizeof right);
        for (int i = 1, cnt = 0; i < n; ++i) {
            cnt += boxes[i - 1] == '1';
            left[i] = left[i - 1] + cnt;
        }
        for (int i = n - 2, cnt = 0; ~i; --i) {
            cnt += boxes[i + 1] == '1';
            right[i] = right[i + 1] + cnt;
        }
        vector<int> ans(n);
        for (int i = 0; i < n; ++i) ans[i] = left[i] + right[i];
        return ans;
    }
};
class Solution {
public:
    vector<int> minOperations(string boxes) {
        int n = boxes.size();
        vector<int> ans(n);
        for (int i = 1, cnt = 0; i < n; ++i) {
            cnt += boxes[i - 1] == '1';
            ans[i] = ans[i - 1] + cnt;
        }
        for (int i = n - 2, cnt = 0, s = 0; ~i; --i) {
            cnt += boxes[i + 1] == '1';
            s += cnt;
            ans[i] += s;
        }
        return ans;
    }
};

Go

func minOperations(boxes string) []int {
	n := len(boxes)
	left := make([]int, n)
	right := make([]int, n)
	for i, cnt := 1, 0; i < n; i++ {
		if boxes[i-1] == '1' {
			cnt++
		}
		left[i] = left[i-1] + cnt
	}
	for i, cnt := n-2, 0; i >= 0; i-- {
		if boxes[i+1] == '1' {
			cnt++
		}
		right[i] = right[i+1] + cnt
	}
	ans := make([]int, n)
	for i := range ans {
		ans[i] = left[i] + right[i]
	}
	return ans
}
func minOperations(boxes string) []int {
	n := len(boxes)
	ans := make([]int, n)
	for i, cnt := 1, 0; i < n; i++ {
		if boxes[i-1] == '1' {
			cnt++
		}
		ans[i] = ans[i-1] + cnt
	}
	for i, cnt, s := n-2, 0, 0; i >= 0; i-- {
		if boxes[i+1] == '1' {
			cnt++
		}
		s += cnt
		ans[i] += s
	}
	return ans
}

TypeScript

function minOperations(boxes: string): number[] {
    const n = boxes.length;
    const left = new Array(n).fill(0);
    const right = new Array(n).fill(0);
    for (let i = 1, count = 0; i < n; i++) {
        if (boxes[i - 1] == '1') {
            count++;
        }
        left[i] = left[i - 1] + count;
    }
    for (let i = n - 2, count = 0; i >= 0; i--) {
        if (boxes[i + 1] == '1') {
            count++;
        }
        right[i] = right[i + 1] + count;
    }
    return left.map((v, i) => v + right[i]);
}
function minOperations(boxes: string): number[] {
    const n = boxes.length;
    const ans = new Array(n).fill(0);
    for (let i = 1, count = 0; i < n; i++) {
        if (boxes[i - 1] === '1') {
            count++;
        }
        ans[i] = ans[i - 1] + count;
    }
    for (let i = n - 2, count = 0, sum = 0; i >= 0; i--) {
        if (boxes[i + 1] === '1') {
            count++;
        }
        sum += count;
        ans[i] += sum;
    }
    return ans;
}

Rust

impl Solution {
    pub fn min_operations(boxes: String) -> Vec<i32> {
        let s = boxes.as_bytes();
        let n = s.len();
        let mut left = vec![0; n];
        let mut right = vec![0; n];
        let mut count = 0;
        for i in 1..n {
            if s[i - 1] == b'1' {
                count += 1;
            }
            left[i] = left[i - 1] + count;
        }
        count = 0;
        for i in (0..n - 1).rev() {
            if s[i + 1] == b'1' {
                count += 1;
            }
            right[i] = right[i + 1] + count;
        }
        (0..n).into_iter().map(|i| left[i] + right[i]).collect()
    }
}
impl Solution {
    pub fn min_operations(boxes: String) -> Vec<i32> {
        let s = boxes.as_bytes();
        let n = s.len();
        let mut ans = vec![0; n];
        let mut count = 0;
        for i in 1..n {
            if s[i - 1] == b'1' {
                count += 1;
            }
            ans[i] = ans[i - 1] + count;
        }
        let mut sum = 0;
        count = 0;
        for i in (0..n - 1).rev() {
            if s[i + 1] == b'1' {
                count += 1;
            }
            sum += count;
            ans[i] += sum;
        }
        ans
    }
}

C

/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
int* minOperations(char* boxes, int* returnSize) {
    int n = strlen(boxes);
    int* left = malloc(sizeof(int) * n);
    int* right = malloc(sizeof(int) * n);
    memset(left, 0, sizeof(int) * n);
    memset(right, 0, sizeof(int) * n);
    for (int i = 1, count = 0; i < n; i++) {
        if (boxes[i - 1] == '1') {
            count++;
        }
        left[i] = left[i - 1] + count;
    }
    for (int i = n - 2, count = 0; i >= 0; i--) {
        if (boxes[i + 1] == '1') {
            count++;
        }
        right[i] = right[i + 1] + count;
    }
    int* ans = malloc(sizeof(int) * n);
    for (int i = 0; i < n; i++) {
        ans[i] = left[i] + right[i];
    }
    free(left);
    free(right);
    *returnSize = n;
    return ans;
}
/**
 * Note: The returned array must be malloced, assume caller calls free().
 */
int* minOperations(char* boxes, int* returnSize) {
    int n = strlen(boxes);
    int* ans = malloc(sizeof(int) * n);
    memset(ans, 0, sizeof(int) * n);
    for (int i = 1, count = 0; i < n; i++) {
        if (boxes[i - 1] == '1') {
            count++;
        }
        ans[i] = ans[i - 1] + count;
    }
    for (int i = n - 2, count = 0, sum = 0; i >= 0; i--) {
        if (boxes[i + 1] == '1') {
            count++;
        }
        sum += count;
        ans[i] += sum;
    }
    *returnSize = n;
    return ans;
}

...