You are given two strings word1
and word2
. You want to construct a string merge
in the following way: while either word1
or word2
are non-empty, choose one of the following options:
- If
word1
is non-empty, append the first character inword1
tomerge
and delete it fromword1
.- For example, if
word1 = "abc"
andmerge = "dv"
, then after choosing this operation,word1 = "bc"
andmerge = "dva"
.
- For example, if
- If
word2
is non-empty, append the first character inword2
tomerge
and delete it fromword2
.- For example, if
word2 = "abc"
andmerge = ""
, then after choosing this operation,word2 = "bc"
andmerge = "a"
.
- For example, if
Return the lexicographically largest merge
you can construct.
A string a
is lexicographically larger than a string b
(of the same length) if in the first position where a
and b
differ, a
has a character strictly larger than the corresponding character in b
. For example, "abcd"
is lexicographically larger than "abcc"
because the first position they differ is at the fourth character, and d
is greater than c
.
Example 1:
Input: word1 = "cabaa", word2 = "bcaaa" Output: "cbcabaaaaa" Explanation: One way to get the lexicographically largest merge is: - Take from word1: merge = "c", word1 = "abaa", word2 = "bcaaa" - Take from word2: merge = "cb", word1 = "abaa", word2 = "caaa" - Take from word2: merge = "cbc", word1 = "abaa", word2 = "aaa" - Take from word1: merge = "cbca", word1 = "baa", word2 = "aaa" - Take from word1: merge = "cbcab", word1 = "aa", word2 = "aaa" - Append the remaining 5 a's from word1 and word2 at the end of merge.
Example 2:
Input: word1 = "abcabc", word2 = "abdcaba" Output: "abdcabcabcaba"
Constraints:
1 <= word1.length, word2.length <= 3000
word1
andword2
consist only of lowercase English letters.
class Solution:
def largestMerge(self, word1: str, word2: str) -> str:
i = j = 0
ans = []
while i < len(word1) and j < len(word2):
if word1[i:] > word2[j:]:
ans.append(word1[i])
i += 1
else:
ans.append(word2[j])
j += 1
ans.append(word1[i:])
ans.append(word2[j:])
return "".join(ans)
class Solution {
public String largestMerge(String word1, String word2) {
int m = word1.length(), n = word2.length();
int i = 0, j = 0;
StringBuilder ans = new StringBuilder();
while (i < m && j < n) {
boolean gt = word1.substring(i).compareTo(word2.substring(j)) > 0;
ans.append(gt ? word1.charAt(i++) : word2.charAt(j++));
}
ans.append(word1.substring(i));
ans.append(word2.substring(j));
return ans.toString();
}
}
class Solution {
public:
string largestMerge(string word1, string word2) {
int m = word1.size(), n = word2.size();
int i = 0, j = 0;
string ans;
while (i < m && j < n) {
bool gt = word1.substr(i) > word2.substr(j);
ans += gt ? word1[i++] : word2[j++];
}
ans += word1.substr(i);
ans += word2.substr(j);
return ans;
}
};
func largestMerge(word1 string, word2 string) string {
m, n := len(word1), len(word2)
i, j := 0, 0
var ans strings.Builder
for i < m && j < n {
if word1[i:] > word2[j:] {
ans.WriteByte(word1[i])
i++
} else {
ans.WriteByte(word2[j])
j++
}
}
ans.WriteString(word1[i:])
ans.WriteString(word2[j:])
return ans.String()
}
function largestMerge(word1: string, word2: string): string {
const m = word1.length;
const n = word2.length;
let ans = '';
let i = 0;
let j = 0;
while (i < m && j < n) {
ans += word1.slice(i) > word2.slice(j) ? word1[i++] : word2[j++];
}
ans += word1.slice(i);
ans += word2.slice(j);
return ans;
}
impl Solution {
pub fn largest_merge(word1: String, word2: String) -> String {
let word1 = word1.as_bytes();
let word2 = word2.as_bytes();
let m = word1.len();
let n = word2.len();
let mut ans = String::new();
let mut i = 0;
let mut j = 0;
while i < m && j < n {
if word1[i..] > word2[j..] {
ans.push(word1[i] as char);
i += 1;
} else {
ans.push(word2[j] as char);
j += 1;
}
}
word1[i..].iter().for_each(|c| ans.push(*c as char));
word2[j..].iter().for_each(|c| ans.push(*c as char));
ans
}
}
char* largestMerge(char* word1, char* word2) {
int m = strlen(word1);
int n = strlen(word2);
int i = 0;
int j = 0;
char* ans = malloc((m + n + 1) * sizeof(char));
while (i < m && j < n) {
int k = 0;
while (word1[i + k] && word2[j + k] && word1[i + k] == word2[j + k]) {
k++;
}
if (word1[i + k] > word2[j + k]) {
ans[i + j] = word1[i];
i++;
} else {
ans[i + j] = word2[j];
j++;
};
}
while (word1[i]) {
ans[i + j] = word1[i];
i++;
}
while (word2[j]) {
ans[i + j] = word2[j];
j++;
}
ans[m + n] = '\0';
return ans;
}