You are given an integer array nums
and an integer x
. In one operation, you can either remove the leftmost or the rightmost element from the array nums
and subtract its value from x
. Note that this modifies the array for future operations.
Return the minimum number of operations to reduce x
to exactly 0
if it is possible, otherwise, return -1
.
Example 1:
Input: nums = [1,1,4,2,3], x = 5 Output: 2 Explanation: The optimal solution is to remove the last two elements to reduce x to zero.
Example 2:
Input: nums = [5,6,7,8,9], x = 4 Output: -1
Example 3:
Input: nums = [3,2,20,1,1,3], x = 10 Output: 5 Explanation: The optimal solution is to remove the last three elements and the first two elements (5 operations in total) to reduce x to zero.
Constraints:
1 <= nums.length <= 105
1 <= nums[i] <= 104
1 <= x <= 109
class Solution:
def minOperations(self, nums: List[int], x: int) -> int:
x = sum(nums) - x
vis = {0: -1}
ans = inf
s, n = 0, len(nums)
for i, v in enumerate(nums):
s += v
if s not in vis:
vis[s] = i
if s - x in vis:
j = vis[s - x]
ans = min(ans, n - (i - j))
return -1 if ans == inf else ans
class Solution:
def minOperations(self, nums: List[int], x: int) -> int:
x = sum(nums) - x
ans = inf
n = len(nums)
s = j = 0
for i, v in enumerate(nums):
s += v
while j <= i and s > x:
s -= nums[j]
j += 1
if s == x:
ans = min(ans, n - (i - j + 1))
return -1 if ans == inf else ans
class Solution {
public int minOperations(int[] nums, int x) {
x = -x;
for (int v : nums) {
x += v;
}
Map<Integer, Integer> vis = new HashMap<>();
vis.put(0, -1);
int n = nums.length;
int ans = 1 << 30;
for (int i = 0, s = 0; i < n; ++i) {
s += nums[i];
vis.putIfAbsent(s, i);
if (vis.containsKey(s - x)) {
int j = vis.get(s - x);
ans = Math.min(ans, n - (i - j));
}
}
return ans == 1 << 30 ? -1 : ans;
}
}
class Solution {
public int minOperations(int[] nums, int x) {
x = -x;
for (int v : nums) {
x += v;
}
int n = nums.length;
int ans = 1 << 30;
for (int i = 0, j = 0, s = 0; i < n; ++i) {
s += nums[i];
while (j <= i && s > x) {
s -= nums[j++];
}
if (s == x) {
ans = Math.min(ans, n - (i - j + 1));
}
}
return ans == 1 << 30 ? -1 : ans;
}
}
class Solution {
public:
int minOperations(vector<int>& nums, int x) {
x = accumulate(nums.begin(), nums.end(), 0) - x;
unordered_map<int, int> vis{{0, -1}};
int n = nums.size();
int ans = 1 << 30;
for (int i = 0, s = 0; i < n; ++i) {
s += nums[i];
if (!vis.count(s)) {
vis[s] = i;
}
if (vis.count(s - x)) {
int j = vis[s - x];
ans = min(ans, n - (i - j));
}
}
return ans == 1 << 30 ? -1 : ans;
}
};
class Solution {
public:
int minOperations(vector<int>& nums, int x) {
x = accumulate(nums.begin(), nums.end(), 0) - x;
int n = nums.size();
int ans = 1 << 30;
for (int i = 0, j = 0, s = 0; i < n; ++i) {
s += nums[i];
while (j <= i && s > x) {
s -= nums[j++];
}
if (s == x) {
ans = min(ans, n - (i - j + 1));
}
}
return ans == 1 << 30 ? -1 : ans;
}
};
func minOperations(nums []int, x int) int {
x = -x
for _, v := range nums {
x += v
}
vis := map[int]int{0: -1}
ans := 1 << 30
s, n := 0, len(nums)
for i, v := range nums {
s += v
if _, ok := vis[s]; !ok {
vis[s] = i
}
if j, ok := vis[s-x]; ok {
ans = min(ans, n-(i-j))
}
}
if ans == 1<<30 {
return -1
}
return ans
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
func minOperations(nums []int, x int) int {
x = -x
for _, v := range nums {
x += v
}
ans := 1 << 30
s, n := 0, len(nums)
j := 0
for i, v := range nums {
s += v
for j <= i && s > x {
s -= nums[j]
j++
}
if s == x {
ans = min(ans, n-(i-j+1))
}
}
if ans == 1<<30 {
return -1
}
return ans
}
func min(a, b int) int {
if a < b {
return a
}
return b
}
function minOperations(nums: number[], x: number): number {
x = nums.reduce((a, b) => a + b, 0) - x;
const vis = new Map();
vis.set(0, -1);
const n = nums.length;
let ans = 1 << 30;
for (let i = 0, s = 0; i < n; ++i) {
s += nums[i];
if (!vis.has(s)) {
vis.set(s, i);
}
if (vis.has(s - x)) {
const j = vis.get(s - x);
ans = Math.min(ans, n - (i - j));
}
}
return ans == 1 << 30 ? -1 : ans;
}
function minOperations(nums: number[], x: number): number {
x = nums.reduce((a, b) => a + b, 0) - x;
const n = nums.length;
let ans = 1 << 30;
for (let i = 0, j = 0, s = 0; i < n; ++i) {
s += nums[i];
while (j <= i && s > x) {
s -= nums[j++];
}
if (s == x) {
ans = Math.min(ans, n - (i - j + 1));
}
}
return ans == 1 << 30 ? -1 : ans;
}
impl Solution {
pub fn min_operations(nums: Vec<i32>, x: i32) -> i32 {
let n = nums.len();
let target = nums.iter().sum::<i32>() - x;
if target < 0 {
return -1;
}
let mut ans = i32::MAX;
let mut sum = 0;
let mut i = 0;
for j in 0..n {
sum += nums[j];
while sum > target {
sum -= nums[i];
i += 1;
}
if sum == target {
ans = ans.min((n - 1 - (j - i)) as i32)
}
}
if ans == i32::MAX {
return -1;
}
ans
}
}
#define min(a, b) (((a) < (b)) ? (a) : (b))
int minOperations(int* nums, int numsSize, int x) {
int target = -x;
for (int i = 0; i < numsSize; i++) {
target += nums[i];
}
if (target < 0) {
return -1;
}
int ans = INT_MAX;
int sum = 0;
int i = 0;
for (int j = 0; j < numsSize; j++) {
sum += nums[j];
while (sum > target) {
sum -= nums[i++];
}
if (sum == target) {
ans = min(ans, numsSize - 1 - (j - i));
}
}
if (ans == INT_MAX) {
return -1;
}
return ans;
}