Skip to content

Latest commit

 

History

History
356 lines (316 loc) · 7.84 KB

File metadata and controls

356 lines (316 loc) · 7.84 KB

中文文档

Description

You are given an integer array nums and an integer x. In one operation, you can either remove the leftmost or the rightmost element from the array nums and subtract its value from x. Note that this modifies the array for future operations.

Return the minimum number of operations to reduce x to exactly 0 if it is possible, otherwise, return -1.

 

Example 1:

Input: nums = [1,1,4,2,3], x = 5
Output: 2
Explanation: The optimal solution is to remove the last two elements to reduce x to zero.

Example 2:

Input: nums = [5,6,7,8,9], x = 4
Output: -1

Example 3:

Input: nums = [3,2,20,1,1,3], x = 10
Output: 5
Explanation: The optimal solution is to remove the last three elements and the first two elements (5 operations in total) to reduce x to zero.

 

Constraints:

  • 1 <= nums.length <= 105
  • 1 <= nums[i] <= 104
  • 1 <= x <= 109

Solutions

Python3

class Solution:
    def minOperations(self, nums: List[int], x: int) -> int:
        x = sum(nums) - x
        vis = {0: -1}
        ans = inf
        s, n = 0, len(nums)
        for i, v in enumerate(nums):
            s += v
            if s not in vis:
                vis[s] = i
            if s - x in vis:
                j = vis[s - x]
                ans = min(ans, n - (i - j))
        return -1 if ans == inf else ans
class Solution:
    def minOperations(self, nums: List[int], x: int) -> int:
        x = sum(nums) - x
        ans = inf
        n = len(nums)
        s = j = 0
        for i, v in enumerate(nums):
            s += v
            while j <= i and s > x:
                s -= nums[j]
                j += 1
            if s == x:
                ans = min(ans, n - (i - j + 1))
        return -1 if ans == inf else ans

Java

class Solution {
    public int minOperations(int[] nums, int x) {
        x = -x;
        for (int v : nums) {
            x += v;
        }
        Map<Integer, Integer> vis = new HashMap<>();
        vis.put(0, -1);
        int n = nums.length;
        int ans = 1 << 30;
        for (int i = 0, s = 0; i < n; ++i) {
            s += nums[i];
            vis.putIfAbsent(s, i);
            if (vis.containsKey(s - x)) {
                int j = vis.get(s - x);
                ans = Math.min(ans, n - (i - j));
            }
        }
        return ans == 1 << 30 ? -1 : ans;
    }
}
class Solution {
    public int minOperations(int[] nums, int x) {
        x = -x;
        for (int v : nums) {
            x += v;
        }
        int n = nums.length;
        int ans = 1 << 30;
        for (int i = 0, j = 0, s = 0; i < n; ++i) {
            s += nums[i];
            while (j <= i && s > x) {
                s -= nums[j++];
            }
            if (s == x) {
                ans = Math.min(ans, n - (i - j + 1));
            }
        }
        return ans == 1 << 30 ? -1 : ans;
    }
}

C++

class Solution {
public:
    int minOperations(vector<int>& nums, int x) {
        x = accumulate(nums.begin(), nums.end(), 0) - x;
        unordered_map<int, int> vis{{0, -1}};
        int n = nums.size();
        int ans = 1 << 30;
        for (int i = 0, s = 0; i < n; ++i) {
            s += nums[i];
            if (!vis.count(s)) {
                vis[s] = i;
            }
            if (vis.count(s - x)) {
                int j = vis[s - x];
                ans = min(ans, n - (i - j));
            }
        }
        return ans == 1 << 30 ? -1 : ans;
    }
};
class Solution {
public:
    int minOperations(vector<int>& nums, int x) {
        x = accumulate(nums.begin(), nums.end(), 0) - x;
        int n = nums.size();
        int ans = 1 << 30;
        for (int i = 0, j = 0, s = 0; i < n; ++i) {
            s += nums[i];
            while (j <= i && s > x) {
                s -= nums[j++];
            }
            if (s == x) {
                ans = min(ans, n - (i - j + 1));
            }
        }
        return ans == 1 << 30 ? -1 : ans;
    }
};

Go

func minOperations(nums []int, x int) int {
	x = -x
	for _, v := range nums {
		x += v
	}
	vis := map[int]int{0: -1}
	ans := 1 << 30
	s, n := 0, len(nums)
	for i, v := range nums {
		s += v
		if _, ok := vis[s]; !ok {
			vis[s] = i
		}
		if j, ok := vis[s-x]; ok {
			ans = min(ans, n-(i-j))
		}
	}
	if ans == 1<<30 {
		return -1
	}
	return ans
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}
func minOperations(nums []int, x int) int {
	x = -x
	for _, v := range nums {
		x += v
	}
	ans := 1 << 30
	s, n := 0, len(nums)
	j := 0
	for i, v := range nums {
		s += v
		for j <= i && s > x {
			s -= nums[j]
			j++
		}
		if s == x {
			ans = min(ans, n-(i-j+1))
		}
	}
	if ans == 1<<30 {
		return -1
	}
	return ans
}

func min(a, b int) int {
	if a < b {
		return a
	}
	return b
}

TypeScript

function minOperations(nums: number[], x: number): number {
    x = nums.reduce((a, b) => a + b, 0) - x;
    const vis = new Map();
    vis.set(0, -1);
    const n = nums.length;
    let ans = 1 << 30;
    for (let i = 0, s = 0; i < n; ++i) {
        s += nums[i];
        if (!vis.has(s)) {
            vis.set(s, i);
        }
        if (vis.has(s - x)) {
            const j = vis.get(s - x);
            ans = Math.min(ans, n - (i - j));
        }
    }
    return ans == 1 << 30 ? -1 : ans;
}
function minOperations(nums: number[], x: number): number {
    x = nums.reduce((a, b) => a + b, 0) - x;
    const n = nums.length;
    let ans = 1 << 30;
    for (let i = 0, j = 0, s = 0; i < n; ++i) {
        s += nums[i];
        while (j <= i && s > x) {
            s -= nums[j++];
        }
        if (s == x) {
            ans = Math.min(ans, n - (i - j + 1));
        }
    }
    return ans == 1 << 30 ? -1 : ans;
}

Rust

impl Solution {
    pub fn min_operations(nums: Vec<i32>, x: i32) -> i32 {
        let n = nums.len();
        let target = nums.iter().sum::<i32>() - x;
        if target < 0 {
            return -1;
        }
        let mut ans = i32::MAX;
        let mut sum = 0;
        let mut i = 0;
        for j in 0..n {
            sum += nums[j];
            while sum > target {
                sum -= nums[i];
                i += 1;
            }
            if sum == target {
                ans = ans.min((n - 1 - (j - i)) as i32)
            }
        }
        if ans == i32::MAX {
            return -1;
        }
        ans
    }
}

C

#define min(a, b) (((a) < (b)) ? (a) : (b))

int minOperations(int* nums, int numsSize, int x) {
    int target = -x;
    for (int i = 0; i < numsSize; i++) {
        target += nums[i];
    }
    if (target < 0) {
        return -1;
    }
    int ans = INT_MAX;
    int sum = 0;
    int i = 0;
    for (int j = 0; j < numsSize; j++) {
        sum += nums[j];
        while (sum > target) {
            sum -= nums[i++];
        }
        if (sum == target) {
            ans = min(ans, numsSize - 1 - (j - i));
        }
    }
    if (ans == INT_MAX) {
        return -1;
    }
    return ans;
}

...