Skip to content

Latest commit

 

History

History
233 lines (193 loc) · 5.92 KB

File metadata and controls

233 lines (193 loc) · 5.92 KB

中文文档

Description

You have some number of sticks with positive integer lengths. These lengths are given as an array sticks, where sticks[i] is the length of the ith stick.

You can connect any two sticks of lengths x and y into one stick by paying a cost of x + y. You must connect all the sticks until there is only one stick remaining.

Return the minimum cost of connecting all the given sticks into one stick in this way.

 

Example 1:

Input: sticks = [2,4,3]
Output: 14
Explanation: You start with sticks = [2,4,3].
1. Combine sticks 2 and 3 for a cost of 2 + 3 = 5. Now you have sticks = [5,4].
2. Combine sticks 5 and 4 for a cost of 5 + 4 = 9. Now you have sticks = [9].
There is only one stick left, so you are done. The total cost is 5 + 9 = 14.

Example 2:

Input: sticks = [1,8,3,5]
Output: 30
Explanation: You start with sticks = [1,8,3,5].
1. Combine sticks 1 and 3 for a cost of 1 + 3 = 4. Now you have sticks = [4,8,5].
2. Combine sticks 4 and 5 for a cost of 4 + 5 = 9. Now you have sticks = [9,8].
3. Combine sticks 9 and 8 for a cost of 9 + 8 = 17. Now you have sticks = [17].
There is only one stick left, so you are done. The total cost is 4 + 9 + 17 = 30.

Example 3:

Input: sticks = [5]
Output: 0
Explanation: There is only one stick, so you don't need to do anything. The total cost is 0.

 

Constraints:

  • 1 <= sticks.length <= 104
  • 1 <= sticks[i] <= 104

Solutions

Priority queue.

Python3

class Solution:
    def connectSticks(self, sticks: List[int]) -> int:
        heapify(sticks)
        ans = 0
        while len(sticks) > 1:
            z = heappop(sticks) + heappop(sticks)
            ans += z
            heappush(sticks, z)
        return ans

Java

class Solution {
    public int connectSticks(int[] sticks) {
        PriorityQueue<Integer> pq = new PriorityQueue<>();
        for (int x : sticks) {
            pq.offer(x);
        }
        int ans = 0;
        while (pq.size() > 1) {
            int z = pq.poll() + pq.poll();
            ans += z;
            pq.offer(z);
        }
        return ans;
    }
}

C++

class Solution {
public:
    int connectSticks(vector<int>& sticks) {
        priority_queue<int, vector<int>, greater<int>> pq;
        for (auto& x : sticks) {
            pq.push(x);
        }
        int ans = 0;
        while (pq.size() > 1) {
            int x = pq.top();
            pq.pop();
            int y = pq.top();
            pq.pop();
            int z = x + y;
            ans += z;
            pq.push(z);
        }
        return ans;
    }
};

Go

func connectSticks(sticks []int) (ans int) {
	hp := &hp{sticks}
	heap.Init(hp)
	for hp.Len() > 1 {
		x, y := heap.Pop(hp).(int), heap.Pop(hp).(int)
		ans += x + y
		heap.Push(hp, x+y)
	}
	return
}

type hp struct{ sort.IntSlice }

func (h hp) Less(i, j int) bool  { return h.IntSlice[i] < h.IntSlice[j] }
func (h *hp) Push(v interface{}) { h.IntSlice = append(h.IntSlice, v.(int)) }
func (h *hp) Pop() interface{} {
	a := h.IntSlice
	v := a[len(a)-1]
	h.IntSlice = a[:len(a)-1]
	return v
}

TypeScript

function connectSticks(sticks: number[]): number {
    const pq = new Heap(sticks);
    let ans = 0;
    while (pq.size() > 1) {
        const x = pq.pop();
        const y = pq.pop();
        ans += x + y;
        pq.push(x + y);
    }
    return ans;
}

type Compare<T> = (lhs: T, rhs: T) => number;

class Heap<T = number> {
    data: Array<T | null>;
    lt: (i: number, j: number) => boolean;
    constructor();
    constructor(data: T[]);
    constructor(compare: Compare<T>);
    constructor(data: T[], compare: Compare<T>);
    constructor(data: T[] | Compare<T>, compare?: (lhs: T, rhs: T) => number);
    constructor(
        data: T[] | Compare<T> = [],
        compare: Compare<T> = (lhs: T, rhs: T) =>
            lhs < rhs ? -1 : lhs > rhs ? 1 : 0,
    ) {
        if (typeof data === 'function') {
            compare = data;
            data = [];
        }
        this.data = [null, ...data];
        this.lt = (i, j) => compare(this.data[i]!, this.data[j]!) < 0;
        for (let i = this.size(); i > 0; i--) this.heapify(i);
    }

    size(): number {
        return this.data.length - 1;
    }

    push(v: T): void {
        this.data.push(v);
        let i = this.size();
        while (i >> 1 !== 0 && this.lt(i, i >> 1)) this.swap(i, (i >>= 1));
    }

    pop(): T {
        this.swap(1, this.size());
        const top = this.data.pop();
        this.heapify(1);
        return top!;
    }

    top(): T {
        return this.data[1]!;
    }
    heapify(i: number): void {
        while (true) {
            let min = i;
            const [l, r, n] = [i * 2, i * 2 + 1, this.data.length];
            if (l < n && this.lt(l, min)) min = l;
            if (r < n && this.lt(r, min)) min = r;
            if (min !== i) {
                this.swap(i, min);
                i = min;
            } else break;
        }
    }

    clear(): void {
        this.data = [null];
    }

    private swap(i: number, j: number): void {
        const d = this.data;
        [d[i], d[j]] = [d[j], d[i]];
    }
}

...