-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmain.py
139 lines (123 loc) · 4.65 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
import torch
import numpy as np
import os
import time
import argparse
import yaml
import pickle
import scipy.sparse as sp
from scipy.sparse import linalg
import torch.nn as nn
import torch
from src.utils.helper import get_dataloader, check_device, get_num_nodes
from src.models.DeepPA import DeepPA
from src.trainers.deeppa_trainer import DeepPA_Trainer
from src.utils.graph_algo import load_graph_data
from src.utils.args import get_public_config, str_to_bool
def get_config():
parser = get_public_config()
# get private config
parser.add_argument("--model_name", type=str, default="DeepPA", help="which model to train")
parser.add_argument("--dropout", type=float, default=0.3)
parser.add_argument("--filter_type", type=str, default="transition")
parser.add_argument("--n_blocks", type=int, default=2)
parser.add_argument("--n_hidden", type=int, default=64)
parser.add_argument("--n_heads", type=int, default=2)
parser.add_argument("--spatial_flag", type=str_to_bool, default=True, help="whether to use spatial transformer")
parser.add_argument("--temporal_flag", type=str_to_bool, default=True, help="whether to use temporal transformer")
parser.add_argument("--spatial_encoding", type=str_to_bool, default=True, help="whether to use spatial encoding")
parser.add_argument("--temporal_encoding", type=str_to_bool, default=True, help="whether to use temporal encoding")
parser.add_argument("--temporal_PE", type=str_to_bool, default=True, help="whether to use temporal PE")
parser.add_argument("--GCO", type=str_to_bool, default=True, help="whether to use GCO")
parser.add_argument("--CLUSTER", type=str_to_bool, default=False, help="whether to use CLUSTER")
parser.add_argument("--GCO_Thre", type=float, default=1, help="The proportion of low frequency signals")
parser.add_argument("--base_lr", type=float, default=1e-3)
parser.add_argument("--lr_decay_ratio", type=float, default=0.5)
args = parser.parse_args()
args.steps = [10, 20, 30, 40]
print(args)
folder_name = "{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}-{}".format(
args.n_hidden,
args.n_blocks,
args.n_heads,
args.spatial_flag,
args.temporal_flag,
args.spatial_encoding,
args.temporal_encoding,
args.temporal_PE,
args.aug,
args.batch_size,
args.base_lr,
args.n_exp,
args.GCO,
args.temporal_encoding,
args.GCO_Thre,
)
args.log_dir = "./logs/{}/{}/{}/".format(args.dataset, args.model_name, folder_name)
print(args.log_dir)
args.num_nodes = get_num_nodes(args.dataset)
args.datapath = os.path.join("./data", args.dataset)
args.graph_pkl = "data/sensor_graph/adj_mx_{}.pkl".format(args.dataset.lower())
if args.seed != 0:
torch.manual_seed(args.seed)
os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu)
return args, folder_name
def main():
args, fname = get_config()
device = check_device()
_, _, adj_mat = load_graph_data(args.graph_pkl)
model = DeepPA(
dropout=args.dropout,
spatial_flag=args.spatial_flag,
temporal_flag=args.temporal_flag,
spatial_encoding=args.spatial_encoding,
temporal_encoding=args.temporal_encoding,
temporal_PE=args.temporal_PE,
GCO=args.GCO,
CLUSTER=args.CLUSTER,
n_hidden=args.n_hidden,
end_channels=args.n_hidden * 8,
n_blocks=args.n_blocks,
name=args.model_name,
dataset=args.dataset,
device=device,
num_nodes=args.num_nodes,
seq_len=args.seq_len,
horizon=args.horizon,
input_dim=args.input_dim,
output_dim=args.output_dim,
GCO_Thre=args.GCO_Thre,
)
print("model created..")
data = get_dataloader(args.datapath, args.batch_size, args.output_dim)
print("get dataloader..")
trainer = DeepPA_Trainer(
model=model,
adj_mat=adj_mat,
filter_type=args.filter_type,
data=data,
aug=args.aug,
base_lr=args.base_lr,
steps=args.steps,
lr_decay_ratio=args.lr_decay_ratio,
log_dir=args.log_dir,
n_exp=args.n_exp,
wandb_flag=args.wandb,
save_iter=args.save_iter,
clip_grad_value=args.max_grad_norm,
max_epochs=args.max_epochs,
patience=args.patience,
device=device,
)
print("trainer..")
if args.mode == "train":
print("began training..")
trainer.train()
trainer.test(-1, "test")
else:
trainer.test(-1, args.mode)
if args.save_preds:
trainer.save_preds(-1)
if __name__ == "__main__":
torch.set_num_threads(8)
main()