-
Notifications
You must be signed in to change notification settings - Fork 16
/
Copy pathevaluate.py
210 lines (173 loc) · 7.83 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Tue Jul 14 10:09:09 2020
@author: yoonsanghyu
"""
# Created on 2018/12
# Author: Kaituo XU
import argparse
from mir_eval.separation import bss_eval_sources
from pit_criterion import cal_loss
from collections import OrderedDict
import numpy as np
import torch
from data import AudioDataset, EvalAudioDataLoader
from FaSNet import FaSNet_TAC
def remove_pad(inputs, inputs_lengths):
"""
Args:
inputs: torch.Tensor, [B, C, T] or [B, T], B is batch size
inputs_lengths: torch.Tensor, [B]
Returns:
results: a list containing B items, each item is [C, T], T varies
"""
results = []
dim = inputs.dim()
if dim == 3:
C = inputs.size(1)
for input, length in zip(inputs, inputs_lengths):
if dim == 3: # [B, C, T]
results.append(input[:,:length].view(C, -1).cpu().numpy())
elif dim == 2: # [B, T]
results.append(input[:length].view(-1).cpu().numpy())
return results
parser = argparse.ArgumentParser('Evaluate separation performance using FaSNet + TAC')
parser.add_argument('--model_path', type=str, default='exp/tmp/temp_best.pth.tar', help='Path to model file created by training')
parser.add_argument('--cal_sdr', type=int, default=1, help='Whether calculate SDR, add this option because calculation of SDR is very slow')
parser.add_argument('--use_cuda', type=int, default=1, help='Whether use GPU to separate speech')
# General config
# Task related
parser.add_argument('--sample_rate', default=16000, type=int, help='Sample rate')
# Network architecture
parser.add_argument('--enc_dim', default=64, type=int, help='Number of filters in autoencoder')
parser.add_argument('--win_len', default=4, type=int, help='Number of convolutional blocks in each repeat')
parser.add_argument('--context_len', default=16, type=int, help='context window size')
parser.add_argument('--feature_dim', default=64, type=int, help='feature dimesion')
parser.add_argument('--hidden_dim', default=128, type=int, help='Hidden dimension')
parser.add_argument('--layer', default=4, type=int, help='Number of layer in dprnn step')
parser.add_argument('--segment_size', default=50, type=int, help="segment_size")
parser.add_argument('--nspk', default=2, type=int, help='Maximum number of speakers')
parser.add_argument('--mic', default=6, type=int, help='number of microphone')
def evaluate(args):
total_SISNRi = 0
total_SDRi = 0
total_cnt = 0
# Load model
model = FaSNet_TAC(enc_dim=args.enc_dim, feature_dim=args.feature_dim, hidden_dim=args.hidden_dim, layer=args.layer, segment_size=args.segment_size,
nspk=args.nspk, win_len=args.win_len, context_len=args.context_len, sr=args.sample_rate)
if args.use_cuda:
model = torch.nn.DataParallel(model)
model.cuda()
# model.load_state_dict(torch.load(args.model_path, map_location='cpu'))
model_info = torch.load(args.model_path)
try:
model.load_state_dict(model_info['model_state_dict'])
except KeyError:
state_dict = OrderedDict()
for k, v in model_info['model_state_dict'].items():
name = k.replace("module.", "") # remove 'module.'
state_dict[name] = v
model.load_state_dict(state_dict)
print(model)
model.eval()
# Load data
dataset = AudioDataset('test', batch_size = 1, sample_rate = args.sample_rate, nmic = args.mic)
data_loader = EvalAudioDataLoader(dataset, batch_size=1, num_workers=8)
sisnr_array=[]
sdr_array=[]
with torch.no_grad():
for i, (data) in enumerate(data_loader):
# Get batch data
padded_mixture, mixture_lengths, padded_source = data
if args.use_cuda:
padded_mixture = padded_mixture.cuda()
mixture_lengths = mixture_lengths.cuda()
padded_source = padded_source.cuda()
x = torch.rand(2, 6, 32000)
none_mic = torch.zeros(1).type(x.type())
# Forward
estimate_source = model(padded_mixture, none_mic.long()) # [M, C, T]
loss, max_snr, estimate_source, reorder_estimate_source = \
cal_loss(padded_source, estimate_source, mixture_lengths)
M,_,T = padded_mixture.shape
mixture_ref = torch.chunk(padded_mixture, args.mic, dim =1)[0] #[M, ch, T] -> [M, 1, T]
mixture_ref = mixture_ref.view(M,T) #[M, 1, T] -> [M, T]
mixture = remove_pad(mixture_ref, mixture_lengths)
source = remove_pad(padded_source, mixture_lengths)
estimate_source = remove_pad(reorder_estimate_source, mixture_lengths)
# for each utterance
for mix, src_ref, src_est in zip(mixture, source, estimate_source):
print("Utt", total_cnt + 1)
# Compute SDRi
if args.cal_sdr:
avg_SDRi = cal_SDRi(src_ref, src_est, mix)
total_SDRi += avg_SDRi
sdr_array.append(avg_SDRi)
print("\tSDRi={0:.2f}".format(avg_SDRi))
# Compute SI-SNRi
avg_SISNRi = cal_SISNRi(src_ref, src_est, mix)
print("\tSI-SNRi={0:.2f}".format(avg_SISNRi))
total_SISNRi += avg_SISNRi
sisnr_array.append(avg_SISNRi)
total_cnt += 1
if args.cal_sdr:
print("Average SDR improvement: {0:.2f}".format(total_SDRi / total_cnt))
np.save('sisnr.npy',np.array(sisnr_array))
np.save('sdr.npy',np.array(sdr_array))
print("Average SISNR improvement: {0:.2f}".format(total_SISNRi / total_cnt))
def cal_SDRi(src_ref, src_est, mix):
"""Calculate Source-to-Distortion Ratio improvement (SDRi).
NOTE: bss_eval_sources is very very slow.
Args:
src_ref: numpy.ndarray, [C, T]
src_est: numpy.ndarray, [C, T], reordered by best PIT permutation
mix: numpy.ndarray, [T]
Returns:
average_SDRi
"""
src_anchor = np.stack([mix, mix], axis=0)
sdr, sir, sar, popt = bss_eval_sources(src_ref, src_est)
sdr0, sir0, sar0, popt0 = bss_eval_sources(src_ref, src_anchor)
avg_SDRi = ((sdr[0]-sdr0[0]) + (sdr[1]-sdr0[1])) / 2
# print("SDRi1: {0:.2f}, SDRi2: {1:.2f}".format(sdr[0]-sdr0[0], sdr[1]-sdr0[1]))
return avg_SDRi
def cal_SISNRi(src_ref, src_est, mix):
"""Calculate Scale-Invariant Source-to-Noise Ratio improvement (SI-SNRi)
Args:
src_ref: numpy.ndarray, [C, T]
src_est: numpy.ndarray, [C, T], reordered by best PIT permutation
mix: numpy.ndarray, [T]
Returns:
average_SISNRi
"""
sisnr1 = cal_SISNR(src_ref[0], src_est[0])
sisnr2 = cal_SISNR(src_ref[1], src_est[1])
sisnr1b = cal_SISNR(src_ref[0], mix)
sisnr2b = cal_SISNR(src_ref[1], mix)
# print("SISNR base1 {0:.2f} SISNR base2 {1:.2f}, avg {2:.2f}".format(
# sisnr1b, sisnr2b, (sisnr1b+sisnr2b)/2))
# print("SISNRi1: {0:.2f}, SISNRi2: {1:.2f}".format(sisnr1, sisnr2))
avg_SISNRi = ((sisnr1 - sisnr1b) + (sisnr2 - sisnr2b)) / 2
return avg_SISNRi
def cal_SISNR(ref_sig, out_sig, eps=1e-8):
"""Calcuate Scale-Invariant Source-to-Noise Ratio (SI-SNR)
Args:
ref_sig: numpy.ndarray, [T]
out_sig: numpy.ndarray, [T]
Returns:
SISNR
"""
assert len(ref_sig) == len(out_sig)
ref_sig = ref_sig - np.mean(ref_sig)
out_sig = out_sig - np.mean(out_sig)
ref_energy = np.sum(ref_sig ** 2) + eps
proj = np.sum(ref_sig * out_sig) * ref_sig / ref_energy
noise = out_sig - proj
ratio = np.sum(proj ** 2) / (np.sum(noise ** 2) + eps)
sisnr = 10 * np.log(ratio + eps) / np.log(10.0)
return sisnr
if __name__ == '__main__':
args = parser.parse_args()
print(args)
evaluate(args)