-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict_styleptb.py
executable file
·135 lines (127 loc) · 4.65 KB
/
predict_styleptb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
#!/usr/bin/env python3
import sys
import os
import argparse
import json
import random
import shutil
import copy
import pickle
import torch
from torch import cuda
import numpy as np
import time
import logging
from tokenizer import Tokenizer
from utils import *
from torch.nn.utils.rnn import pad_sequence
parser = argparse.ArgumentParser()
parser.add_argument('--data_file', default='data/StylePTB/ATP/test.tsv')
parser.add_argument('--out_file', default='styleptb-pred-atp.txt')
parser.add_argument('--model_path', default='')
parser.add_argument('--gpu', default=0, type=int, help='which gpu to use')
parser.add_argument('--num_samples', default=1000, type=int, help='samples')
parser.add_argument('--seed', default=3435, type=int, help='random seed')
def get_data(data_file):
data = []
for d in open(data_file):
src, tgt = d.split("\t")
if ";" in src:
src, emph = src.strip().split(";")
emph = emph.strip()
src = src.strip().split()
emph_mask = []
for w in src:
if w == emph:
emph_mask.append(1)
else:
emph_mask.append(0)
data.append({"src": src, "tgt": tgt.strip().split(), "emph_mask": emph_mask})
else:
data.append({"src": src.strip().split(), "tgt": tgt.strip().split()})
return data
def main(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
cuda.set_device(args.gpu)
device = torch.device("cuda:"+str(args.gpu))
data = get_data(args.data_file)
model_checkpoint = torch.load(args.model_path)
encoder = model_checkpoint["encoder"]
decoder = model_checkpoint["decoder"]
enc_parser = model_checkpoint["parser"]
tokenizer = model_checkpoint["tokenizer"]
model_args = model_checkpoint["args"]
encoder.to(device)
decoder.to(device)
enc_parser.to(device)
out = open(args.out_file, "w")
eval(data, encoder, decoder, enc_parser, device, tokenizer, model_args, out)
out.close()
def eval(data, encoder, decoder, enc_parser, device, tokenizer, model_args, out):
num_sents = 0
num_words_pred = 0
total_nll_pred = 0.
for d in data:
x = [d["src"]]
y = [d["tgt"]]
x_tensor, _, _ = tokenizer.convert_batch(x)
y_tensor, _, _ = tokenizer.convert_batch(y)
x_tensor, y_tensor = x_tensor.to(device), y_tensor.to(device)
emph_mask = torch.LongTensor(d["emph_mask"]).to(device) if "emph_mask" in d else None
x_lengths = torch.Tensor([len(d["src"])]).long().to(device)
y_lengths = torch.Tensor([len(d["tgt"])]).long().to(device)
_, x_spans, _, x_actions, _ = enc_parser(x_tensor, x_lengths)
with torch.no_grad():
node_features, node_spans = encoder(x_tensor, x_lengths, spans = x_spans,
token_type = emph_mask)
new_spans = []
for span, x_str in zip(node_spans, x):
new_span = []
for s in span:
new_span.append([s[0], s[1], x_str[s[0]:s[1]+1]])
new_spans.append(new_span)
node_spans = new_spans
y_preds = decoder.decode(node_features, node_spans, tokenizer,
num_samples = args.num_samples)
best_pred = None
best_nll = 1e5
best_length = None
best_ppl = 1e5
best_derivation = None
for k, y_pred in enumerate(y_preds[0]):
y_pred = [y_pred]
y_pred_tensor, _, _ = tokenizer.convert_batch(y_pred)
y_pred_tensor = y_pred_tensor.to(device)
y_pred_lengths = torch.Tensor([len(y_pred[0])]).long().to(device)
with torch.no_grad():
if len(y_pred[0]) > 30 or len(y_pred[0]) < 2:
continue
pred_nll = decoder(y_pred_tensor, y_pred_lengths,
node_features, node_spans, argmax=False,
x_str = y_pred)
ppl = np.exp(pred_nll.item() / y_pred_lengths.sum().item())
# if pred_nll.item() < best_nll:
if ppl < best_ppl:
best_ppl = ppl
best_pred = y_pred[0]
best_nll = pred_nll.item()
best_length = y_pred_lengths.sum().item()
y_pred_tree, pred_all_spans, pred_all_spans_node = decoder(
y_pred_tensor, y_pred_lengths, node_features, node_spans,
x_str=y_pred, argmax=True)
num_words_pred += best_length
total_nll_pred += best_nll
print(np.exp(total_nll_pred/num_words_pred))
pred = " ".join(best_pred)
gold = " ".join(y[0])
src = " ".join(x[0])
out.write(pred + "\n")
x_parse = get_tree(x_actions[0], x[0])
print("X: %s" % x_parse)
print("SRC: %s\nPRED: %s\nGOLD: %s" % (" ".join(x[0]), pred, gold))
if __name__ == '__main__':
args = parser.parse_args()
main(args)