-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpredict_scan.py
executable file
·132 lines (124 loc) · 4.54 KB
/
predict_scan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
#!/usr/bin/env python3
import sys
import os
import argparse
import json
import random
import shutil
import copy
import pickle
import torch
from torch import cuda
import numpy as np
import time
import logging
from tokenizer import Tokenizer
from utils import *
from torch.nn.utils.rnn import pad_sequence
parser = argparse.ArgumentParser()
parser.add_argument('--data_file', default='data/SCAN/tasks_test_addprim_jump.txt')
parser.add_argument('--model_path', default='model-scan-addjump.pt')
parser.add_argument('--gpu', default=0, type=int, help='which gpu to use')
parser.add_argument('--num_samples', default=10, type=int, help='num samples for decoding')
parser.add_argument('--seed', default=3435, type=int, help='random seed')
def get_data(data_file):
data = []
for d in open(data_file, "r"):
src, tgt = d.split("IN: ")[1].split(" OUT: ")
src = src.strip().split()
tgt = tgt.strip().split()
if len(src) == 1 or len(tgt) == 1:
src = src + src
tgt = tgt + tgt
data.append({"src": src, "tgt": tgt})
return data
def main(args):
random.seed(args.seed)
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
cuda.set_device(args.gpu)
device = torch.device("cuda:"+str(args.gpu))
data = get_data(args.data_file)
model_checkpoint = torch.load(args.model_path)
encoder = model_checkpoint["encoder"]
decoder = model_checkpoint["decoder"]
parser = model_checkpoint["parser"]
x_tokenizer = model_checkpoint["x_tokenizer"]
y_tokenizer = model_checkpoint["y_tokenizer"]
model_args = model_checkpoint["args"]
encoder.to(device)
decoder.to(device)
parser.to(device)
eval(data, encoder, decoder, parser, device, x_tokenizer, y_tokenizer, model_args)
def eval(data, encoder, decoder, parser, device, x_tokenizer, y_tokenizer, model_args):
num_sents = 0
num_words = 0.
num_words_pred = 0
total_nll = 0.
total_nll_pred = 0.
total_correct = 0.
num_examples = 0.
for d in data:
x = [d["src"]]
y = [d["tgt"]]
gold = " ".join(y[0])
src = " ".join(x[0])
x_tensor, _, _ = x_tokenizer.convert_batch(x)
y_tensor, _, _ = y_tokenizer.convert_batch(y)
x_tensor, y_tensor = x_tensor.to(device), y_tensor.to(device)
x_lengths = torch.Tensor([len(d["src"])]).long().to(device)
y_lengths = torch.Tensor([len(d["tgt"])]).long().to(device)
_, x_spans, _, x_actions, _ = parser(x_tensor, x_lengths)
with torch.no_grad():
node_features, node_spans = encoder(x_tensor, x_lengths,
spans = x_spans)
num_sents += 1
num_words += y_lengths.sum().item()
nll = decoder(y_tensor, y_lengths,
node_features, node_spans, argmax=False)
total_nll += nll.sum().item()
y_preds = decoder.decode(node_features, node_spans, y_tokenizer,
num_samples = args.num_samples)
best_pred = [""]
best_nll = 1e5
best_length = 0
best_ppl = 1e5
num_examples += 1
for y_pred in y_preds[0]:
if len(y_pred) < 2:
continue
y_pred = [y_pred]
y_pred_tensor, _, _ = y_tokenizer.convert_batch(y_pred)
y_pred_tensor = y_pred_tensor.to(device)
y_pred_lengths = torch.Tensor([len(y_pred[0])]).long().to(device)
with torch.no_grad():
if len(y_pred[0]) > 60:
continue
pred_nll = decoder(y_pred_tensor, y_pred_lengths,
node_features, node_spans, argmax=False,
x_str = y_pred)
ppl = np.exp(pred_nll.item() / y_pred_lengths.sum().item())
# if pred_nll.item() < best_nll:
if ppl < best_ppl:
best_ppl = ppl
best_pred = y_pred[0]
best_nll = pred_nll.item()
best_length = y_pred_lengths.sum().item()
y_pred_tree, pred_all_spans, pred_all_spans_node = decoder(
y_pred_tensor, y_pred_lengths, node_features, node_spans,
x_str=y_pred, argmax=True)
num_words_pred += best_length
total_nll_pred += best_nll
if " ".join(best_pred) == gold:
total_correct += 1
print(total_correct / num_examples, np.exp(total_nll / num_words), np.exp(total_nll_pred/num_words_pred))
pred = " ".join(best_pred)
x_parse = get_tree(x_actions[0], x[0])
print("X: %s" % x_parse)
print("SRC: %s\nPRED: %s\nGOLD: %s" % (" ".join(x[0]), pred, gold))
print("")
print("Accuracy: %.4f" % (total_correct / num_examples))
if __name__ == '__main__':
args = parser.parse_args()
main(args)