-
Notifications
You must be signed in to change notification settings - Fork 0
/
learn_clearance.py
97 lines (77 loc) · 3.29 KB
/
learn_clearance.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
from __future__ import print_function
import keras
from keras.models import Sequential, load_model
from keras.layers import Dense, Dropout, Flatten
from keras.layers import Conv2D, MaxPooling2D
from keras import backend as K
# the data_sets for learning from encode_mnist.py
from mnist_steg import train_zero, train_parity, train_random
# to document date of current run
from datetime import date
today = date.today()
# adds the date to document the scores
scores = open('learning_scores.txt', 'a+')
scores.write('date of run: ' + today.strftime('%d/%m/%Y') + '\n')
# data_sets from all three labels
data_sets = {
'zero_label': train_zero,
'parity_label': train_parity,
'random_label': train_random
}
def learn_clearance(x_train, y_train, x_test, y_test, type_set):
batch_size = 128
num_classes = 10
epochs = 12
img_rows, img_cols = 28, 28
if K.image_data_format() == 'channels_first':
x_train = x_train.reshape(x_train.shape[0], 1, img_rows, img_cols)
x_test = x_test.reshape(x_test.shape[0], 1, img_rows, img_cols)
input_shape = (1, img_rows, img_cols)
else:
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('training on ', type_set, ' data_set')
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# transforms labels to categories
y_train = keras.utils.to_categorical(y_train, num_classes)
y_test = keras.utils.to_categorical(y_test, num_classes)
model = Sequential()
# adding the layers for the neural network
model.add(Conv2D(32, kernel_size=(3, 3), activation='relu', input_shape=input_shape))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128, activation='relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes, activation='softmax'))
model.compile(loss=keras.losses.categorical_crossentropy, optimizer=keras.optimizers.Adadelta(),
metrics=['accuracy'])
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', score[0])
print('Test accuracy:', score[1])
# document scores for each data_set
scores.write('LEARNING SCORES FOR ' + type_set + ' DATA_SET: \n'
+ '\tTest loss: ' + str(score[0]) + '\n'
+ '\tTest accuracy: ' + str(score[1]) + '\n')
return model
# trains all the data_sets
def train():
data_set_models = {}
for data_set in data_sets:
data = data_sets[data_set]
data_set_models[data['type']] = learn_clearance(data['x_train'], data['y_train'], data['x_test'],
data['y_test'], data['type'])
return data_set_models
models = train()
# save model and learnt weights for later use without having to rerun
for model in models:
models[model].save(model + "_config.h5")