-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
105 lines (91 loc) · 3.47 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import time
from options.train_options import TrainOptions
import os
from data.data_loader import CreateDataLoader
from models.models import create_model
from util.visualizer import Visualizer
from util.metrics import PSNR, SSIM
from multiprocessing import freeze_support
from tensorboardX import SummaryWriter
def train(opt, data_loader, model, visualizer):
dataset,val_dataset = data_loader.load_data()
writer = SummaryWriter('./checkpoints/%s'%opt.name)
dataset_size = len(data_loader)
print('#training images = %d' % dataset_size)
total_steps = 0
for epoch in range(opt.epoch_count, opt.niter + opt.niter_decay + 1):
epoch_start_time = time.time()
epoch_iter = 0
for i, data in enumerate(dataset):
iter_start_time = time.time()
total_steps += opt.batchSize
epoch_iter += opt.batchSize
model.set_input(data)
model.optimize_parameters()
if total_steps % opt.display_freq == 0:
results = model.get_current_visuals()
psnrMetric = PSNR(results['Reblur'], results['Blurry'])
print('PSNR on Train = %f' % psnrMetric)
visualizer.display_current_results(results, epoch)
if total_steps % opt.print_freq == 0:
errors = model.get_current_errors()
writer.add_scalar('loss',errors['total_loss'],total_steps)
t = (time.time() - iter_start_time) / opt.batchSize
visualizer.print_current_errors(epoch, epoch_iter, errors, t)
if opt.display_id > 0:
visualizer.plot_current_errors(epoch, float(epoch_iter)/dataset_size, opt, errors)
# if total_steps % opt.save_latest_freq == 0:
# print('saving the latest model (epoch %d, total_steps %d)' % (epoch, total_steps))
# model.save('latest')
test_PSNR = val(val_dataset,model, epoch, 'test')
writer.add_scalar('PSNR/test',test_PSNR,epoch)
if epoch % (10*opt.save_epoch_freq) == 0:
train_PSNR = val(dataset,model, epoch, 'train')
writer.add_scalar('PSNR/train',train_PSNR,epoch)
if epoch % opt.save_epoch_freq == 0:
print('saving the model at the end of epoch %d, iters %d' % (epoch, total_steps))
model.save('latest')
model.save(epoch%100)
print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.niter + opt.niter_decay, time.time() - epoch_start_time))
if epoch > opt.niter:
model.update_learning_rate()
def val(dataset,model,epoch,mode):
t_psnr = 0.0
psnr_last = 0.0
counter = 0
start_time = time.time()
for i, data in enumerate(dataset):
counter = i+1
model.set_input(data)
model.test()
visuals = model.get_current_visuals()
psnr = PSNR(visuals['Reblur'],visuals['Blurry'])
# print("testing image pair: %.2f"%(psnr))
t_psnr += psnr
if i>=200:
break
ave_psnr = t_psnr/counter
log_name = os.path.join(opt.checkpoints_dir,opt.name,'psnr_log.txt')
message = '[Epoch:%d] %s data PSNR: %.4f (time:%.3f)' %(epoch, mode, ave_psnr,time.time()-start_time)
print(message)
with open(log_name,'a') as log:
log.write(message+'\n')
return ave_psnr
if __name__ == '__main__':
freeze_support()
# python train.py --dataroot /.path_to_your_data --learn_residual --resize_or_crop crop --fineSize CROP_SIZE (we used 256)
opt = TrainOptions().parse()
# opt.dataroot = './datasets/train_xtran/'
opt.learn_residual = True
opt.resize_or_crop = "crop"
opt.fineSize = 256
opt.gan_type = "none"
# opt.which_model_netG = "unet_256"
# default = 5000
opt.save_latest_freq = 100
# default = 100
opt.print_freq = 20
data_loader = CreateDataLoader(opt)
model = create_model(opt)
visualizer = Visualizer(opt)
train(opt, data_loader, model, visualizer)