Skip to content

Latest commit

 

History

History
64 lines (52 loc) · 1.43 KB

README.md

File metadata and controls

64 lines (52 loc) · 1.43 KB

MPO

PyTorch Implementation of the Maximum a Posteriori Policy Optimisation (paper1, paper2) Reinforcement Learning Algorithms for OpenAI gym environments.

How to Run

I tested on the below environment.

  • Ubuntu 18.04
  • Python 3.7
  • PyTorch 1.6

INSTALL

Install PyTorch https://pytorch.org/

pip install gym Box2D IPython tqdm scipy tensorboard tensorboardx

Continuous Action Space

python train.py \
  --device cuda:0 \
  --env LunarLanderContinuous-v2 \
  --dual_constraint 0.1 \
  --kl_mean_constraint 0.01 \
  --kl_var_constraint 0.0001 \
  --discount_factor 0.99 \
  --iteration_num 500 \
  --sample_episode_num 100 \
  --sample_episode_maxlen 500 \
  --sample_action_num 64 \
  --batch_size 256 \
  --episode_rerun_num 3 \
  --log log_continuous \
  --render

Discrete Action Space

python train.py \
  --device cuda:0 \
  --env LunarLander-v2 \
  --dual_constraint 0.1 \
  --kl_constraint 0.01 \
  --discount_factor 0.99 \
  --iteration_num 500 \
  --sample_episode_num 100 \
  --sample_episode_maxlen 500 \
  --batch_size 256 \
  --episode_rerun_num 3 \
  --log log_discrete \
  --render

License

This repository is a clone of theogruner/rl_pro_telu, which is licensed under the GNU GPL3 License - see the LICENSE file for details