-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain_nr.py
231 lines (195 loc) · 11.5 KB
/
train_nr.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
import os
import random
import torch
import pickle
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
from torch.optim import Adam, RMSprop
from torchvision.utils import save_image
from tensorboardX import SummaryWriter
from dataloader import get_loader
from models.neural_rasterizer import NeuralRasterizer
from models.vgg_perceptual_loss import VGGPerceptualLoss
from models.vgg_contextual_loss import VGGContextualLoss
from models import util_funcs
from options import get_parser_main_model
from data_utils.svg_utils import render
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def train_nr_model(opts):
exp_dir = os.path.join("experiments", opts.experiment_name)
sample_dir = os.path.join(exp_dir, "samples")
ckpt_dir = os.path.join(exp_dir, "checkpoints")
log_dir = os.path.join(exp_dir, "logs")
logfile = open(os.path.join(log_dir, "train_loss_log.txt"), 'w')
val_logfile = open(os.path.join(log_dir, "val_loss_log.txt"), 'w')
train_loader = get_loader(opts.data_root, opts.image_size, opts.char_categories, opts.max_seq_len, opts.seq_feature_dim, opts.batch_size, opts.read_mode, opts.mode)
val_loader = get_loader(opts.data_root, opts.image_size, opts.char_categories, opts.max_seq_len, opts.seq_feature_dim, opts.batch_size, opts.read_mode, 'test')
neural_rasterizer = NeuralRasterizer(img_size=opts.image_size, feature_dim=opts.seq_feature_dim, hidden_size=opts.hidden_size, num_hidden_layers=opts.num_hidden_layers,
ff_dropout_p=opts.ff_dropout, rec_dropout_p=opts.rec_dropout, input_nc=2 * opts.hidden_size,
output_nc=1, ngf=16, bottleneck_bits=opts.bottleneck_bits, norm_layer=nn.LayerNorm, mode='train')
vggcxlossfunc = VGGContextualLoss()
if torch.cuda.is_available() and opts.multi_gpu:
neural_rasterizer = nn.DataParallel(neural_rasterizer)
vggcxlossfunc = nn.DataParallel(vggcxlossfunc)
neural_rasterizer = neural_rasterizer.to(device)
vggcxlossfunc = vggcxlossfunc.to(device)
all_parameters = list(neural_rasterizer.parameters())
optimizer = Adam(all_parameters, lr=opts.lr, betas=(opts.beta1, opts.beta2), eps=opts.eps, weight_decay=opts.weight_decay)
if opts.tboard:
writer = SummaryWriter(log_dir)
mean = np.load(os.path.join(opts.data_root, opts.mode, 'mean.npz'))
std = np.load(os.path.join(opts.data_root, opts.mode, 'stdev.npz'))
mean = torch.from_numpy(mean).to(device).to(torch.float32)
std = torch.from_numpy(std).to(device).to(torch.float32)
for epoch in range(opts.init_epoch, opts.n_epochs):
for idx, data in enumerate(train_loader):
input_image = data['rendered'].to(device) # bs, opts.char_categories, opts.image_size, opts.image_size
input_sequence = data['sequence'].to(device)
input_sequence = (input_sequence - mean) / std
input_seqlen = data['seq_len'].to(device) # bs, opts.char_categories 1
input_clss = data['class'].to(device) # bs, opts.char_categories, 1
trg_cls = torch.randint(0, opts.char_categories, (input_image.size(0), 1)).to(device) # bs, 1
# randomly select a target vector glyph
trg_seq = util_funcs.select_seqs(input_sequence, trg_cls, opts)
trg_seq = trg_seq.squeeze(1)
trg_char = util_funcs.trgcls_to_onehot(input_clss, trg_cls, opts)
# randomly select a target glyph image and svg
trg_img = util_funcs.select_imgs(input_image, trg_cls, opts)
gt_trg_seq = trg_seq.clone().detach()
trg_seq = trg_seq.transpose(0,1) # seqlen, bs ,feat_dim
# run the neural_rasterizer
nr_out = neural_rasterizer(trg_seq, trg_char, trg_img)
output_img = nr_out['gen_imgs']
rec_loss = nr_out['rec_loss']
vggcx_loss = vggcxlossfunc(nr_out['gen_imgs'], trg_img)
loss = opts.l1_loss_w * nr_out['rec_loss'] + opts.cx_loss_w * vggcx_loss['cx_loss']
# perform optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
batches_done = epoch * len(train_loader) + idx + 1
message = (
f"Epoch: {epoch}/{opts.n_epochs}, Batch: {idx}/{len(train_loader)}, "
f"Loss: {loss.item():.6f}, "
f"img_l1_loss: {rec_loss.item():.6f}, "
f"img_cx_loss: {opts.cx_loss_w * vggcx_loss['cx_loss']:.6f}, "
)
logfile.write(message + '\n')
if batches_done % 50 == 0:
print(message)
if opts.tboard:
writer.add_scalar('Loss/loss', loss.item(), batches_done)
writer.add_scalar('Loss/img_l1_loss', opts.l1_loss_w * rec_loss.item(), batches_done)
writer.add_scalar('Loss/img_perceptual_loss', opts.cx_loss_w * vggcx_loss['cx_loss'], batches_done)
writer.add_image('Images/trg_img', trg_img[0], batches_done)
writer.add_image('Images/output_img', output_img[0], batches_done)
if opts.sample_freq > 0 and batches_done % opts.sample_freq == 0:
img_sample = torch.cat((trg_img.data, output_img.data), -2)
save_file = os.path.join(sample_dir, f"train_epoch_{epoch}_batch_{batches_done}.png")
save_image(img_sample, save_file, nrow=8, normalize=True)
svg_target = gt_trg_seq.clone().detach()
svg_target = svg_target * std + mean
for i, one_gt_seq in enumerate(svg_target):
cur_svg_file = os.path.join(sample_dir, f"train_epoch_{epoch}_batch_{batches_done}_no_{i}_svg.svg")
if i == 0:
gt_svg = render(one_gt_seq.cpu().numpy())
with open(cur_svg_file, 'a') as f:
f.write(gt_svg+'\n')
break
if opts.val_freq > 0 and batches_done % opts.val_freq == 0:
val_img_l1_loss = 0.0
val_img_pt_loss = 0.0
with torch.no_grad():
for val_idx, val_data in enumerate(val_loader):
val_input_image = val_data['rendered'].to(device)
val_input_clss = val_data['class'].to(device)
val_input_sequence = val_data['sequence'].to(device)
val_input_sequence = (val_input_sequence - mean) / std
val_input_seqlen = val_data['seq_len'].to(device)
val_trg_cls = torch.randint(0, opts.char_categories, (val_input_image.size(0), 1)).to(device) # bs, 1
val_trg_img = util_funcs.select_imgs(val_input_image, val_trg_cls, opts)
val_trg_seq = util_funcs.select_seqs(val_input_sequence, val_trg_cls, opts)
val_trg_seq = val_trg_seq.squeeze(1)
val_trg_seq = val_trg_seq.transpose(0, 1) # seqlen, bs ,feat_dim
val_trg_char = util_funcs.trgcls_to_onehot(val_input_clss, val_trg_cls, opts)
# run the image encoder-decoder
val_nr_out = neural_rasterizer(val_trg_seq, val_trg_char, val_trg_img)
val_output_image = val_nr_out['gen_imgs']
val_rec_loss = val_nr_out['rec_loss']
val_vggcx_loss = vggcxlossfunc(val_output_image, val_trg_img)
val_img_l1_loss += val_rec_loss.item()
val_img_pt_loss += val_vggcx_loss['cx_loss']
val_img_l1_loss /= len(val_loader)
val_img_pt_loss /= len(val_loader)
val_img_sample = torch.cat((val_trg_img.data, val_output_image.data), -2)
val_save_file = os.path.join(sample_dir, f"val_epoch_{epoch}_batch_{batches_done}.png")
save_image(val_img_sample, val_save_file, nrow=8, normalize=True)
val_svg_target = val_trg_seq.clone().detach()
val_svg_target = val_svg_target * std + mean
#cur_svg_file = os.path.join(res_dir, f"val_epoch_{epoch}_batch_{val_idx}_svg.svg")
for i, one_gt_seq in enumerate(val_svg_target):
cur_svg_file = os.path.join(sample_dir, f"val_epoch_{epoch}_batch_{batches_done}_no_{i}_svg.svg")
if i == 0:
gt_svg = render(one_gt_seq.cpu().numpy())
with open(cur_svg_file, 'a') as f:
f.write(gt_svg+'\n')
break
if opts.tboard:
writer.add_scalar('VAL/img_l1_loss', val_img_l1_loss, batches_done)
writer.add_scalar('VAL/img_pt_loss', val_img_pt_loss, batches_done)
val_msg = (
f"Epoch: {epoch}/{opts.n_epochs}, Batch: {idx}/{len(train_loader)}, "
f"Val image l1 loss: {val_img_l1_loss: .6f}, "
f"Val image pt loss: {val_img_pt_loss: .6f}, "
)
val_logfile.write(val_msg + "\n")
print(val_msg)
if epoch % opts.ckpt_freq == 0:
model_fpath = os.path.join(ckpt_dir, f"{opts.model_name}_{epoch}.nr.pth")
if torch.cuda.is_available() and opts.multi_gpu:
torch.save(neural_rasterizer.module.state_dict(), model_fpath)
else:
torch.save(neural_rasterizer.state_dict(), model_fpath)
logfile.close()
val_logfile.close()
def train(opts):
if opts.model_name == 'neural_raster':
train_nr_model(opts)
elif opts.model_name == 'others':
train_others(opts)
else:
raise NotImplementedError
def test(opts):
if opts.model_name == 'neural_raster':
train_nr_model(opts)
elif opts.model_name == 'others':
test_others(opts)
else:
raise NotImplementedError
def main():
opts = get_parser_main_model().parse_args()
opts.experiment_name = opts.experiment_name + '_' + opts.model_name
os.makedirs("experiments", exist_ok=True)
debug = True
if opts.mode == 'train':
# Create directories
experiment_dir = os.path.join("experiments", opts.experiment_name)
os.makedirs(experiment_dir, exist_ok=debug) # False to prevent multiple train run by mistake
os.makedirs(os.path.join(experiment_dir, "samples"), exist_ok=True)
os.makedirs(os.path.join(experiment_dir, "checkpoints"), exist_ok=True)
os.makedirs(os.path.join(experiment_dir, "results"), exist_ok=True)
os.makedirs(os.path.join(experiment_dir, "logs"), exist_ok=True)
print(f"Training on experiment {opts.experiment_name}...")
# Dump options
with open(os.path.join(experiment_dir, "opts.txt"), "w") as f:
for key, value in vars(opts).items():
f.write(str(key) + ": " + str(value) + "\n")
train(opts)
elif opts.mode == 'test':
print(f"Testing on experiment {opts.experiment_name}...")
test(opts)
else:
raise NotImplementedError
if __name__ == "__main__":
main()