-
Notifications
You must be signed in to change notification settings - Fork 26
/
Copy pathsync_transforms.py
102 lines (87 loc) · 3.77 KB
/
sync_transforms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import random
from PIL import Image, ImageOps, ImageFilter
import numpy as np
class Compose(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img, mask):
assert img.size == mask.size
for t in self.transforms:
img, mask = t(img, mask)
return img, mask
class ComposeWHU(object):
def __init__(self, transforms):
self.transforms = transforms
def __call__(self, img_sar, img_opt, mask):
assert img_sar.size == mask.size and img_opt.size == mask.size
for t in self.transforms:
img_sar, img_opt, mask = t(img_sar, img_opt, mask)
return img_sar, img_opt, mask
class RandomScale(object):
def __init__(self, base_size, crop_size, resize_scale_range):
self.base_size = base_size
self.crop_size = crop_size
self.resize_scale_range = resize_scale_range
def __call__(self, img, mask):
w, h = img.size
# print("img.size:", img.size)
short_size = random.randint(int(self.base_size * self.resize_scale_range[0]),
int(self.base_size * self.resize_scale_range[1]))
# print("short_size:", short_size)
# if h > w:
# ow = short_size
# oh = int(1.0 * h * ow / w)
# else:
# oh = short_size
# ow = int(1.0 * w * oh / h)
ow, oh = short_size, short_size
# print("ow, oh = ", ow, oh)
img, mask = img.resize((ow, oh), Image.BILINEAR), mask.resize((ow, oh), Image.NEAREST)
if short_size < self.crop_size:
padh = self.crop_size - oh if oh < self.crop_size else 0
padw = self.crop_size - ow if ow < self.crop_size else 0
img = ImageOps.expand(img, border=(0, 0, padw, padh), fill=0)
mask = ImageOps.expand(mask, border=(0, 0, padw, padh), fill=0)
w, h = img.size
img = np.array(img)
mask = np.array(mask)
num_crop = 0
while num_crop < 5:
x = random.randint(0, w - self.crop_size)
y = random.randint(0, h - self.crop_size)
endx = x + self.crop_size
endy = y + self.crop_size
patch = img[y:endy, x:endx]
if (patch == 0).all():
continue
else:
break
img = img[y:endy, x:endx]
mask = mask[y:endy, x:endx]
img, mask = Image.fromarray(img), Image.fromarray(mask)
return img, mask
class RandomFlip(object):
def __init__(self, flip_ratio=0.5):
self.flip_ratio = flip_ratio
def __call__(self, img, mask):
if random.random() < self.flip_ratio:
img, mask = img.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(Image.FLIP_LEFT_RIGHT)
else:
img, mask = img.transpose(Image.FLIP_TOP_BOTTOM), mask.transpose(Image.FLIP_TOP_BOTTOM)
return img, mask
class RandomGaussianBlur(object):
def __init__(self, prop):
self.prop = prop
def __call__(self, img, mask, prop):
if random.random() < self.prop:
img = img.filter(ImageFilter.GaussianBlur)(radius=random.random())
return img, mask
class RandomFlipWHU(object):
def __init__(self, flip_ratio=0.5):
self.flip_ratio = flip_ratio
def __call__(self, img_sar, img_opt, mask):
if random.random() < self.flip_ratio:
img_sar, img_opt, mask = img_sar.transpose(Image.FLIP_LEFT_RIGHT), img_opt.transpose(Image.FLIP_LEFT_RIGHT), mask.transpose(Image.FLIP_LEFT_RIGHT)
else:
img_sar, img_opt, mask = img_sar.transpose(Image.FLIP_TOP_BOTTOM), img_opt.transpose(Image.FLIP_TOP_BOTTOM),mask.transpose(Image.FLIP_TOP_BOTTOM)
return img_sar, img_opt, mask