-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_random.py
318 lines (289 loc) · 13 KB
/
train_random.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
# python imports
import argparse
import os
import time
import datetime
from pprint import pprint
import ipdb
# torch imports
import torch
import torch.nn as nn
import torch.utils.data
import yaml
# for visualization
from torch.utils.tensorboard import SummaryWriter
from tqdm import tqdm
# our code
from libs.core import load_config
from libs.datasets import make_dataset, make_data_loader, SUPPORT_DATASET
from libs.modeling import make_meta_arch
from libs.utils import (cotrain_random_one_epoch, ANETdetection,
save_checkpoint, make_optimizer, make_scheduler,
fix_random_seed, ModelEma)
from libs.utils.train_utils import (valid_one_epoch_charades, valid_one_epoch_ego4d, valid_one_epoch_anet)
def print_highlight(message):
print("#" * 10, " ", message, " ", "#" * 10)
def save_config(d, path):
with open(path, "w") as o_f:
yaml.safe_dump(d, o_f)
return
################################################################################
def main(args):
"""main function that handles training / inference
"""
"""0. setup parameters / folders"""
# parse args
args.start_epoch = 0
print_highlight(args.config)
if os.path.isfile(args.config):
cfg = load_config(args.config)
else:
raise ValueError("Config file does not exist.")
print_highlight("config")
# prep for output folder (based on time stamp)
if not os.path.exists(cfg['output_folder']):
os.mkdir(cfg['output_folder'])
cfg_filename = os.path.basename(args.config).replace('.yaml', '')
if len(args.output) == 0:
ts = datetime.datetime.fromtimestamp(int(time.time()))
ckpt_folder = os.path.join(
cfg['output_folder'], cfg_filename + '_' + str(ts))
else:
ckpt_folder = os.path.join(
cfg['output_folder'], cfg_filename + '_' + str(args.output))
if not os.path.exists(ckpt_folder):
os.mkdir(ckpt_folder)
# tensorboard writer
tb_writer = SummaryWriter(os.path.join(ckpt_folder, 'logs'))
# fix the random seeds (this will fix everything)
rng_generator = fix_random_seed(cfg['init_rand_seed'], include_cuda=True)
# re-scale learning rate / # workers based on number of GPUs
cfg['opt']["learning_rate"] *= len(cfg['devices'])
cfg['loader']['num_workers'] *= len(cfg['devices'])
save_config(cfg, os.path.join(ckpt_folder, "config.yaml"))
tad_loss_weight = cfg["train_cfg"]["tad_loss_weight"] if "tad_loss_weight" in cfg[
"train_cfg"] else 1.0 # loss weight
mr_loss_weight = cfg["train_cfg"]["mr_loss_weight"] if "mr_loss_weight" in cfg["train_cfg"] else 1.0
print_highlight("tad loss weight, %.2f, mr loss weight, %.2f" % (tad_loss_weight, mr_loss_weight))
"""1. create dataset / dataloader"""
dataset = cfg_filename.split("_")[0]
print_highlight(dataset)
assert dataset in SUPPORT_DATASET, f"{dataset} is not supported currently"
print_highlight("dataset_name: " + cfg["dataset_name"])
# specific dataset
train_dataset = make_dataset(cfg['dataset_name'], True, cfg['train_split'], **cfg[dataset])
# update cfg based on dataset attributes (fix to epic-kitchens)
train_db_vars = train_dataset.get_attributes()
cfg['model']['train_cfg']['head_empty_cls'] = train_db_vars['empty_label_ids']
# set task
assert args.data_type in ["all", "tad", "mr"], "data_type %s not support yet!" % (args.data_type)
print_highlight("data_type " + args.data_type)
train_dataset.get_type(args.data_type)
train_loader = make_data_loader(train_dataset, True, rng_generator, **cfg['loader'])
# validation dataset, default None
val_dataset = None
val_loader = None
if args.val_freq > 0:
assert len(cfg['val_split']) > 0, "Test set must be specified!"
val_dataset = make_dataset(cfg['dataset_name'], False, cfg['val_split'], **cfg[dataset])
val_dataset.get_type(args.data_type)
# set bs = 1, and disable shuffle
val_loader = make_data_loader(val_dataset, False, None, 1, cfg['loader']['num_workers'])
# mkdir for raw val_data
os.makedirs(os.path.join(ckpt_folder, "submission_data"), exist_ok=True)
# validation setting
if cfg["valid_type"] in ["charades", "ego4d"]:
val_db_vars = val_dataset.get_attributes()
det_eval = ANETdetection(
val_dataset.json_file,
val_dataset.split[0],
tiou_thresholds=val_db_vars['tiou_thresholds']
)
elif cfg["valid_type"] == "anet":
val_split = "validation" if "validation" in val_dataset.split else val_dataset.split[0]
val_db_vars = val_dataset.get_attributes()
det_eval = ANETdetection(
val_dataset.json_file,
val_split,
tiou_thresholds=val_db_vars['tiou_thresholds']
)
if val_dataset.num_classes == 1:
assert cfg['test_cfg']['ext_score_file'] is not None
assert os.path.exists(cfg['test_cfg']['ext_score_file'])
else:
raise NotImplemented(f"{cfg['valid_type']} not implemented yet.")
"""2. create model, optimizer, and scheduler"""
# model
model = make_meta_arch(cfg['model_name'], **cfg['model'])
# not ideal for multi GPU training, ok for now
model = nn.DataParallel(model, device_ids=cfg['devices'])
# optimizer
optimizer = make_optimizer(model, cfg['opt'])
# schedule
num_iters_per_epoch = len(train_loader)
scheduler = make_scheduler(optimizer, cfg['opt'], num_iters_per_epoch)
# enable model EMA
print_highlight("Using model EMA ...")
# print("Using model EMA ...")
model_ema = ModelEma(model)
"""3. Resume from model / Misc"""
best_map = 0
assert not (bool(args.resume) and bool(args.checkpoint))
if args.checkpoint:
print_highlight("loading checkpoint, %s " % args.checkpoint)
if os.path.isfile(args.checkpoint):
# load ckpt
checkpoint = torch.load(
args.checkpoint,
map_location=lambda storage, loc: storage.cuda(cfg['devices'][0])
)
model.load_state_dict(checkpoint['state_dict'])
model_ema.module.load_state_dict(checkpoint['state_dict_ema'])
print("=> loaded checkpoint '{:s}' (epoch {:d}".format(
args.checkpoint, checkpoint['epoch']
))
del checkpoint
else:
print("=> no checkpoint found at '{}'".format(args.resume))
return
if args.resume:
if os.path.isfile(args.resume):
# load ckpt, reset epoch / best resume
checkpoint = torch.load(args.resume,
map_location=lambda storage, loc: storage.cuda(
cfg['devices'][0]))
args.start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
model_ema.module.load_state_dict(checkpoint['state_dict_ema'])
# also load the optimizer / scheduler if necessary
optimizer.load_state_dict(checkpoint['optimizer'])
scheduler.load_state_dict(checkpoint['scheduler'])
best_map = checkpoint["best_map"] if "best_map" in checkpoint else 0
print("=> loaded checkpoint '{:s}' (epoch {:d}".format(
args.resume, checkpoint['epoch']
))
model.module.set_iter_count(args.start_epoch * num_iters_per_epoch)
del checkpoint
else:
print("=> no checkpoint found at '{}'".format(args.resume))
return
# save the current config
with open(os.path.join(ckpt_folder, 'config.txt'), 'w') as fid:
pprint(cfg, stream=fid)
fid.flush()
"""4. training / validation loop"""
print_highlight("\nStart training model {:s} ...".format(cfg['model_name']))
# start training
max_epochs = cfg['opt'].get(
'early_stop_epochs',
cfg['opt']['epochs'] + cfg['opt']['warmup_epochs']
)
model.module.set_tensorboard(tb_writer)
for epoch in range(args.start_epoch, max_epochs):
# train individually or cotrain w. random sampling
cotrain_random_one_epoch(
train_loader,
model,
optimizer,
scheduler,
epoch,
max_epochs,
model_ema=model_ema,
clip_grad_l2norm=cfg['train_cfg']['clip_grad_l2norm'],
tb_writer=tb_writer,
print_freq=args.print_freq,
tad_loss_weight=tad_loss_weight,
mr_loss_weight=mr_loss_weight,
)
best_model = False
# validation skip some epoch
if epoch < args.skip_val_epoch:
continue
# validation
if args.val_freq > 0 and (epoch + 1) % args.val_freq == 0:
if cfg["valid_type"] == "charades":
# anet_map, tad_map, mr_perform = valid_one_epoch_charades(
tad_map, charades_perform, mr_performan = valid_one_epoch_charades(
val_loader,
model=model_ema.module,
curr_epoch=epoch,
evaluator=det_eval, # det_eval
output_file=os.path.join(ckpt_folder, "eval_results.pkl"),
ext_score_file=cfg['test_cfg']['ext_score_file'],
tb_writer=tb_writer,
print_freq=100,
)
mAP = charades_perform
elif cfg["valid_type"] == "ego4d":
ego4d_perform, tad_map, mr_perform = valid_one_epoch_ego4d(
val_loader,
model=model_ema.module,
curr_epoch=epoch,
evaluator=det_eval if args.data_type != "mr" else None, # det_eval
output_file=os.path.join(ckpt_folder, "eval_results.pkl"),
ext_score_file=cfg['test_cfg']['ext_score_file'],
tb_writer=tb_writer,
print_freq=100,
)
mAP = ego4d_perform["tad-map"]
elif cfg["valid_type"] == "anet":
anet_perform, tad_map, mr_perform = valid_one_epoch_anet(
val_loader,
model=model_ema.module,
curr_epoch=epoch,
evaluator=det_eval if args.data_type != "mr" else None, # det_eval
output_file=os.path.join(ckpt_folder, "eval_results.pkl"),
ext_score_file=cfg['test_cfg']['ext_score_file'],
tb_writer=tb_writer,
print_freq=100,
)
mAP = anet_perform["mAP"]
best_map = max(mAP, best_map)
# save best model
if best_map == mAP: best_model = True
# save ckpt once in a while
if (((epoch + 1) == max_epochs) or (
(args.ckpt_freq > 0) and ((epoch + 1) % args.ckpt_freq == 0)) or best_model):
save_states = {
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'scheduler': scheduler.state_dict(),
'optimizer': optimizer.state_dict(),
'best_map': best_map,
}
save_states['state_dict_ema'] = model_ema.module.state_dict()
save_checkpoint(
save_states,
best_model,
file_folder=ckpt_folder,
file_name='epoch_{:03d}.pth.tar'.format(epoch + 1)
)
# wrap up
tb_writer.close()
print("All done!")
return
################################################################################
if __name__ == '__main__':
"""Entry Point"""
# the arg parser
parser = argparse.ArgumentParser(
description='Train a point-based transformer for action localization')
parser.add_argument('--config', default="", type=str,
help='path to a config file')
parser.add_argument('-p', '--print-freq', default=10, type=int,
help='print frequency (default: 10 iterations)')
parser.add_argument('-c', '--ckpt-freq', default=5, type=int,
help='checkpoint frequency (default: every 5 epochs)')
parser.add_argument('--val-freq', default=1, type=int,
help='validation frequency (default: every 1 epochs), <0 means no val')
parser.add_argument('--output', default='', type=str,
help='name of exp folder (default: none)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to a checkpoint (default: none), load ckpt and schedule')
parser.add_argument('--checkpoint', default='', type=str, metavar='PATH',
help='path to a checkpoint (default: none), only load ckpt')
parser.add_argument('--skip-val-epoch', default=-1, type=int,
help='first epoch not to save checkpoint and validation')
parser.add_argument("--data_type", type=str, default="all")
args = parser.parse_args()
main(args)