-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathtrain.py
266 lines (212 loc) · 10.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import math
import random
import os
import shutil
import json
import tqdm
import yaml
import argparse
import numpy as np
import torch
from torch.optim.lr_scheduler import LambdaLR
from model.yolo import Yolo
from lib.load import load_data
from lib.logger import Logger, logger
from lib.loss import ComputeCSLLoss, ComputeKFIoULoss
from test import test
def init():
random.seed(42)
np.random.seed(42)
torch.manual_seed(42)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def weights_init_normal(m):
if isinstance(m, torch.nn.Conv2d):
torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
elif isinstance(m, torch.nn.BatchNorm2d):
torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
torch.nn.init.constant_(m.bias.data, 0.0)
def one_cycle(y1=0.0, y2=1.0, steps=100):
# lambda function for sinusoidal ramp from y1 to y2
return lambda x: ((1 - math.cos(x * math.pi / steps)) / 2) * (y2 - y1) + y1
def fitness(x):
# Model fitness as a weighted combination of metrics
w = [0.0, 0.0, 0.1, 0.9] # weights for [P, R, [email protected], [email protected]:0.95]
return (x * w).sum(0)
class Train:
def __init__(self, args):
self.args = args
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
self.model_path = os.path.join("weights", self.args.model_name)
self.model = None
self.logger = None
def check_model_path(self):
if os.path.exists(self.model_path):
while True:
logger.warning("Model name exists, do you want to override the previous model?")
inp = input(">> [Y:N]")
if inp.lower()[0] == "y":
shutil.rmtree(self.model_path)
break
elif inp.lower()[0] == "n":
logger.info("Stop training!")
exit(0)
os.makedirs(self.model_path)
os.makedirs(os.path.join(self.model_path, "logs"))
def load_model(self, n_classes, model_config, mode, ver):
self.model = Yolo(n_classes, model_config, mode, ver)
self.model = self.model.to(self.device)
self.model.apply(weights_init_normal) # 權重初始化
if len(self.args.weights_path):
logger.info("Loading pretrained weights from: {}".format(self.args.weights_path))
# 1. filter out unnecessary keys
# 第552項開始為yololayer,訓練時不需要用到
# pretrained_dict = {k: v for k, v in pretrained_dict.items() if np.shape(model_dict[k]) == np.shape(v)}
pretrained_dict = torch.load(self.args.weights_path)
pretrained_dict = {k: v for i, (k, v) in enumerate(pretrained_dict.items()) if i < 552}
# 2. overwrite entries in the existing state dict
model_dict = self.model.state_dict()
model_dict.update(pretrained_dict)
# 3. load the new state dict
self.model.load_state_dict(model_dict)
def save_model(self, weightname):
save_folder = os.path.join(self.model_path, "{}.pth".format(weightname))
torch.save(self.model.state_dict(), save_folder)
def save_opts(self, config):
"""Save options to disk so we know what we ran this experiment with
"""
to_save = self.args.__dict__.copy()
to_save.update(config)
with open(os.path.join(self.model_path, 'opt.json'), 'w') as f:
json.dump(to_save, f, indent=2)
def logging_processes(self, epoch, total_train_loss, total_val_loss, mr, mp , map50, map5095, lr):
tensorboard_log = {}
# log training loss
for name, loss in total_train_loss.items():
tensorboard_log[f"train/{name}"] = loss
# log validation loss
for name, loss in total_val_loss.items():
tensorboard_log[f"val/{name}"] = loss
# log metrics
tensorboard_log["metrics/mean recall"] = mr
tensorboard_log["metrics/mean precision"] = mp
tensorboard_log["metrics/[email protected]"] = map50
tensorboard_log["metrics/[email protected]:.95"] = map5095
tensorboard_log["lr"] = lr
self.logger.list_of_scalars_summary(tensorboard_log, epoch)
def train(self):
init()
# load data info
with open(self.args.data, "r") as stream:
data = yaml.safe_load(stream)
# load configs
with open(self.args.config, "r") as stream:
config = yaml.safe_load(stream)
model_cfg, hyp_cfg = config['model'], config['hyp']
self.check_model_path()
self.load_model(len(data["names"]), model_cfg, self.args.mode, self.args.ver)
self.save_opts(config)
self.logger = Logger(os.path.join(self.model_path, "logs"))
if self.args.mode == "csl":
csl = True
compute_loss = ComputeCSLLoss(self.model, hyp_cfg)
else:
csl = False
compute_loss = ComputeKFIoULoss(self.model, hyp_cfg)
train_dataset, train_dataloader = load_data(
data['train'], data['names'], data['type'], hyp_cfg, csl, self.args.img_size, self.args.batch_size, augment=True
)
num_iters_per_epoch = len(train_dataloader)
nbs = 64 # nominal batch size
accumulate = max(round(nbs / self.args.batch_size), 1) # accumulate loss before optimizing
if self.args.optimizer == "Adam":
optimizer = torch.optim.Adam(self.model.parameters(), lr=self.args.lr)
elif self.args.optimizer == "SGD":
optimizer = torch.optim.SGD(self.model.parameters(), lr=self.args.lr, momentum=0.937, nesterov=True)
else:
raise NotImplementedError("The specified optimizer is not implemented.")
nw = max(int((self.args.epochs * num_iters_per_epoch) * hyp_cfg['warmup_prop']), 1000)
lf = one_cycle(1, hyp_cfg['lrf'], int(self.args.epochs))
scheduler = LambdaLR(optimizer, lr_lambda=lf)
initial_lr = optimizer.param_groups[0]['initial_lr']
logger.info(f'Image sizes {self.args.img_size}')
logger.info(f'Starting training for {self.args.epochs} epochs...')
best_fitness = -1
for epoch in range(self.args.epochs):
# -------------------
# ------ Train ------
# -------------------
self.model.train()
total_train_loss = {}
s = ('\n' + '%10s' * 2) % ('Epoch', 'lr')
for name in compute_loss.loss_items.keys():
s += ('%12s') % name
logger.info(s)
pbar = enumerate(train_dataloader)
pbar = tqdm.tqdm(pbar, total=len(train_dataloader))
for batch, (_, imgs, targets) in pbar:
global_step = num_iters_per_epoch * epoch + batch + 1
imgs = imgs.to(self.device)
targets = targets.to(self.device)
# warmup
if global_step <= nw:
xi = [0, nw] # x interp
accumulate = max(1, np.interp(global_step, xi, [1, nbs / self.args.batch_size]).round())
optimizer.param_groups[0]['lr'] = np.interp(global_step, xi, [0.0, initial_lr * lf(epoch)])
outputs = self.model(imgs, training=True)
loss, loss_items = compute_loss(outputs, targets)
loss.backward()
if global_step % accumulate == 0:
optimizer.step()
optimizer.zero_grad()
# print info
s = ('%10s' + '%10.4g') % ('%g/%g' % (epoch + 1, self.args.epochs), optimizer.param_groups[0]["lr"])
for loss in loss_items.values():
s += ('%12.4g') % loss
# store loss items
for item in loss_items:
if item in total_train_loss:
total_train_loss[item] += loss_items[item]
else:
total_train_loss[item] = loss_items[item]
pbar.set_description(s)
pbar.update(0)
lr = optimizer.param_groups[0]["lr"] # for tensorboard
scheduler.step()
# -------------------
# ------ Valid ------
# -------------------
mp, mr, map50, map5095, total_val_loss = test(
self.model, compute_loss, self.device, data, hyp_cfg, csl,
self.args.img_size, self.args.batch_size * 2, conf_thres=0.001, iou_thres=0.65
)
# average losses
for item in total_train_loss:
total_train_loss[item] /= len(train_dataloader)
# update logging info for tensorboard every epoch
self.logging_processes(epoch, total_train_loss, total_val_loss, mr, mp , map50, map5095, lr)
fit = fitness(np.array([mp, mr, map50, map5095]))
if fit > best_fitness:
best_fitness = fit
self.save_model("best")
logger.info("Current best model is saved!")
self.save_model("last")
logger.info("Done!")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--epochs", type=int, default=80, help="number of epochs")
parser.add_argument("--optimizer", default="SGD", nargs='?', choices=['Adam', 'SGD'], help="specify a optimizer for training")
parser.add_argument("--lr", type=float, default=0.01, help="learning rate")
parser.add_argument("--batch_size", type=int, default=4, help="size of batches")
parser.add_argument("--img_size", type=int, default=608, help="size of each image dimension")
parser.add_argument("--weights_path", type=str, default="", help="path to pretrained weights file")
parser.add_argument("--model_name", type=str, default="trash", help="new model name")
parser.add_argument("--mode", default="csl", nargs='?', choices=['csl', 'kfiou'], help="specify a model type")
parser.add_argument("--ver", default="yolov5", nargs='?', choices=['yolov4', 'yolov5', 'yolov7'], help="specify a yolo version")
parser.add_argument("--data", type=str, default="", help=".yaml path for data")
parser.add_argument("--config", type=str, default="", help=".yaml path for configs")
args = parser.parse_args()
print(args)
init()
t = Train(args)
t.train()