forked from Kingsford-Group/vsbo
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_times.py
107 lines (93 loc) · 3.27 KB
/
plot_times.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
import numpy as np
import matplotlib.pyplot as plt
import os
import pdb
from scipy import stats
import argparse
parser = argparse.ArgumentParser('plot versus time')
parser.add_argument('--input_path', type=str)
parser.add_argument('--output_path', type=str)
parser.add_argument('--method',type=str)
parser.add_argument('--runs',help='number of runs',type=int)
#parser.add_argument('--iterations',help='number of iterations for each run',type=int)
parser.add_argument('--T_max',type=int)
parser.add_argument('--best_value',type=float,default=None)
parser.add_argument('--wct',action='store_true')
parser.add_argument('--not_max',action='store_true')
parser.add_argument('--not_accumuate',action='store_true')
#parser.add_argument('--cput',action='cput')
args = parser.parse_args()
def get_T_Y_data(input_path,Y_num,T_max,interval_num,T_type=0,if_max=1,if_accumuate=1):
T_Y = np.zeros((Y_num,interval_num))
for i in range(Y_num):
if not os.path.exists(input_path+"Time_"+str(i+1)+".npy"):
break
if(T_type==0):
T = np.load(input_path+"Time_"+str(i+1)+".npy")
else:
T = np.load(input_path+"Time_process_"+str(i+1)+".npy")
'''
if Dragonfly:
#pdb.set_trace()
T[6:] = T[6:] - T[6] + 1
'''
Y = np.load(input_path+"Y_"+str(i+1)+".npy")
if not if_max:
Y = -Y
#assert T.shape[0]==Y.shape[0]-5
x = T.shape[0]
#print(x,Y.shape[0])
Y_min = Y.min()
pointer = 0
for j in range(interval_num):
while pointer < x:
if(if_accumuate==1 and T[pointer]>int(T_max/interval_num)*(j+1)):
break
elif(if_accumuate==0 and np.sum(T[:pointer+1])>int(T_max/interval_num)*(j+1)):
break
pointer+=1
if(pointer==0):
T_Y[i,j] = Y_min
else:
T_Y[i,j] = np.max(Y[:Y.shape[0]-T.shape[0]+pointer-1])
return T_Y[:i]
if args.wct:
T_type = 0
else:
T_type = 1
if args.not_max:
if_max = 0
else:
if_max = 1
if args.not_accumuate:
if_accumuate = 0
else:
if_accumuate = 1
interval = 100
if args.best_value is None:
Y_tot = get_T_Y_data(args.input_path,args.runs,args.T_max,interval,T_type=T_type,if_max=if_max,if_accumuate=if_accumuate)
else:
Y_tot = args.best_value-get_T_Y_data(args.input_path,args.runs,args.T_max,interval,T_type=T_type,if_max=if_max,if_accumuate=if_accumuate)
Y_err = stats.sem(Y_tot)
Y_mean = np.mean(Y_tot,axis=0)
fig = plt.figure(figsize=(8, 6))
ax = plt.subplot(111)
ax.set_prop_cycle(color=["blue","orange","green","red","purple","brown","pink","gray","olive","cyan","lime","black"])
plt.errorbar(range(0,args.T_max,int(args.T_max/interval)),Y_mean,Y_err,label=args.method)
ax.tick_params(axis="x", labelsize=18)
ax.tick_params(axis="y", labelsize=18)
plt.ylim(0, 8)
if T_type==0:
plt.xlabel("Wall clock time (seconds)", fontsize=20)
else:
plt.xlabel("CPU time (seconds)", fontsize=20)
plt.legend(fontsize="18")
if args.best_value is None:
plt.ylabel("Best value found", fontsize=20)
else:
plt.ylabel("Regret", fontsize=20)
if T_type==0:
fig.savefig(args.output_path+"/curve_wct.png")
else:
fig.savefig(args.output_path+"/curve_cput.png")
plt.close()