就是支持重进入的锁,它表示该锁能够支持一个线程对资源的重复加锁。除此之外,该锁的还支持获取锁时的公平和非公平性选择。
- 获取的时候如果state==0,那么正常获取,同时记录拥有同步状态的是当前线程,cas更新状态为1;如果state!=0,就要看拥有同步状态的线程是不是和当前线程一样,一样的话,获取成功,同时cas对state+1,不一样则进入同步队列里边自旋阻塞
- 释放:释放的时候state-1, 如果减到了0,表示释放成功了,否则没有释放成功
公平就是先尝试获取锁的线程会先得到多,非公平则是去竞争锁,默认是非公平的锁
公平的锁多一次判断,导致性能损失,可以避免饥饿
非公平的性能会更高,但是可能会产生饥饿
实现方面非公平和公平的区别就tryAcquire方法不一样
公平的相比于非公平的会多判断一个 !hasQueuedPredecessors(),hasQueuedPredecessors是判断当前节点是否有前驱节点,如果有,证明有比当前节点等待时间长的节点,所以此时失败,返回false,继续等
// 同步队列为空,或者当前节点是头节点 返回false, 返回false,tryAcquire才可能返回true,保证了先来后到
public final boolean hasQueuedPredecessors() {
Node t = tail; // Read fields in reverse initialization order
Node h = head;
Node s;
return h != t &&
((s = h.next) == null || s.thread != Thread.currentThread());
}
源码不多,直接贴出来
public class ReentrantLock implements Lock, java.io.Serializable {
private static final long serialVersionUID = 7373984872572414699L;
private final Sync sync;
// 跟我们使用AQS一样,也是继承他然后定义一些自己的规则
abstract static class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = -5179523762034025860L;
abstract void lock();
final boolean nonfairTryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
// 状态是0表示没有被获取,进行CAS并在CAS成功时返回true
if (c == 0) {
if (compareAndSetState(0, acquires)) {
// 这个是公平性的保证,他记录了谁获取到同步状态
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
// 有线程获取了锁,这个线程是自己
int nextc = c + acquires;
// 很严谨
if (nextc < 0) // overflow
throw new Error("Maximum lock count exceeded");
// 可以思考下这里为什么不需要CAS,而前面需要
setState(nextc);
return true;
}
return false;
}
protected final boolean tryRelease(int releases) {
int c = getState() - releases;
// 不能释放别人的锁,释放别人的锁感觉是不会出现的,这里很严谨
if (Thread.currentThread() != getExclusiveOwnerThread())
throw new IllegalMonitorStateException();
boolean free = false;
if (c == 0) {
free = true;
// 减到0,就说没有线程在占据锁了
setExclusiveOwnerThread(null);
}
// 更新下状态,这里也是不用CAS,很有学问
setState(c);
// 一直要减到0才说你是释放成功的,这是很自然的事情
return free;
}
protected final boolean isHeldExclusively() {
// 这里直接判断占据锁的线程是不是和当前线程是一个,是的话,就是拿到锁了
// 这说明我们之前写的锁的实现,这个位置是有点问题的
return getExclusiveOwnerThread() == Thread.currentThread();
}
// Condition后边再说
final ConditionObject newCondition() {
return new ConditionObject();
}
final Thread getOwner() {
return getState() == 0 ? null : getExclusiveOwnerThread();
}
final int getHoldCount() {
return isHeldExclusively() ? getState() : 0;
}
// =0就是锁了
final boolean isLocked() {
return getState() != 0;
}
// 这个是与序列化相关的东西
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
s.defaultReadObject();
setState(0); // reset to unlocked state
}
}
static final class NonfairSync extends Sync {
private static final long serialVersionUID = 7316153563782823691L;
final void lock() {
// TODO: 这里有别于FairSync,但是我没看得懂为什么FairSync不这么写
// 或者这里为什么要这么写
if (compareAndSetState(0, 1))
setExclusiveOwnerThread(Thread.currentThread());
else
acquire(1);
}
// 直接调用了Sync里边的nonfairTryAcquire, 这很自然
protected final boolean tryAcquire(int acquires) {
return nonfairTryAcquire(acquires);
}
}
static final class FairSync extends Sync {
private static final long serialVersionUID = -3000897897090466540L;
// 公平的lock是直接调了acquire,
final void lock() {
acquire(1);
}
protected final boolean tryAcquire(int acquires) {
final Thread current = Thread.currentThread();
int c = getState();
if (c == 0) {
// 他会查询有没有比你当前线程等的时间更长的线程,这个就是保证公平性了
if (!hasQueuedPredecessors() &&
compareAndSetState(0, acquires)) {
setExclusiveOwnerThread(current);
return true;
}
}
else if (current == getExclusiveOwnerThread()) {
int nextc = c + acquires;
if (nextc < 0)
throw new Error("Maximum lock count exceeded");
setState(nextc);
return true;
}
return false;
}
}
public ReentrantLock() {
// 默认是非公平
sync = new NonfairSync();
}
// 可以指定要公平的还是非公平的锁
public ReentrantLock(boolean fair) {
sync = fair ? new FairSync() : new NonfairSync();
}
public void lock() {
sync.lock();
}
public void lockInterruptibly() throws InterruptedException {
sync.acquireInterruptibly(1);
}
public boolean tryLock() {
return sync.nonfairTryAcquire(1);
}
public boolean tryLock(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireNanos(1, unit.toNanos(timeout));
}
public void unlock() {
sync.release(1);
}
public Condition newCondition() {
return sync.newCondition();
}
public int getHoldCount() {
return sync.getHoldCount();
}
public boolean isHeldByCurrentThread() {
return sync.isHeldExclusively();
}
public boolean isLocked() {
return sync.isLocked();
}
public final boolean isFair() {
return sync instanceof FairSync;
}
protected Thread getOwner() {
return sync.getOwner();
}
public final boolean hasQueuedThreads() {
return sync.hasQueuedThreads();
}
public final boolean hasQueuedThread(Thread thread) {
return sync.isQueued(thread);
}
public final int getQueueLength() {
return sync.getQueueLength();
}
protected Collection<Thread> getQueuedThreads() {
return sync.getQueuedThreads();
}
public boolean hasWaiters(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.hasWaiters((AbstractQueuedSynchronizer.ConditionObject)condition);
}
public int getWaitQueueLength(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitQueueLength((AbstractQueuedSynchronizer.ConditionObject)condition);
}
protected Collection<Thread> getWaitingThreads(Condition condition) {
if (condition == null)
throw new NullPointerException();
if (!(condition instanceof AbstractQueuedSynchronizer.ConditionObject))
throw new IllegalArgumentException("not owner");
return sync.getWaitingThreads((AbstractQueuedSynchronizer.ConditionObject)condition);
}
public String toString() {
Thread o = sync.getOwner();
return super.toString() + ((o == null) ?
"[Unlocked]" :
"[Locked by thread " + o.getName() + "]");
}
}