forked from bakerjw/NGAW2_correlations
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathnearestCorrelationMatrix.m
561 lines (426 loc) · 14.4 KB
/
nearestCorrelationMatrix.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
%%%%%%%%% This code is designed to solve %%%%%%%%%%%%%
%%%%%%%% min 0.5*<X-G, X-G>
%%%%%%% s.t. X_ii =b_i, i=1,2,...,n
%%%%%%% X>=tau*I (symmetric and positive semi-definite) %%%%%%%%%%%%%%%
%%%%%%%%
%%%%%% based on the algorithm in %%%%%
%%%%%% ``A Quadratically Convergent Newton Method for %%%
%%%%%% Computing the Nearest Correlation Matrix %%%%%
%%%%%%% By Houduo Qi and Defeng Sun %%%%%%%%%%%%
%%%%%%% SIAM J. Matrix Anal. Appl. 28 (2006) 360--385.
%%%%%%%
%%%%%% Last modified date: March 16, 2016 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% %%%%%%%
%%%%%% The input arguments G, b>0, tau>=0, and tol (tolerance error) %%%%
%%%%%%%% %%%%%%%
%%%%%%%% %%%%%%%
%%%%%% For correlation matrix, set b =ones(n,1) %%%%%%%
%%%%%%%%% %%%%%%%
%%%%%%%% For a positive definite matrix %%%%%%%
%%%%%%%% set tau = 1.0e-5 for example %%%%%%%
%%%%%% set tol = 1.0e-6 or lower if no very high accuracy required %%%%%%%
%%%%%% The outputs are the optimal primal and dual solutions %%%%%%%%
%%%%%%% Diagonal Preconditioner is added %%%%%%
%%%%%%% Send your comments and suggestions to %%%%%%
%%%%%%% [email protected] or [email protected] %%%%%%
%%%%% %%%%%%%%%%%%%%%
%%%%% Warning: Though the code works extremely well, it is your call to use it or not. %%%%%%%%
function [X,y] = nearestCorrelationMatrix(G,b,tau,tol)
disp(' --- Semismooth Newton-CG method starts --- ')
t0 = clock;
[n,m] =size(G);
global b0
G =(G + G')/2; % make G symmetric
b0 = ones(n,1); %% default
error_tol = 1.0e-6; %% default for termination accuracy
if nargin==1
tau = 0;
end
if nargin==2
b0 = b; % reset b0
tau = 0;
end
if nargin==3
b0 = b - tau*ones(n,1); % reset b0
G = G - tau*eye(n); % reset G
end
if nargin==4
b0 = b - tau*ones(n,1); % reset b0
G = G - tau*eye(n); % reset G
error_tol = max(1.0e-12,tol); %reset error tolerance
end
Res_b = zeros(300,1);
norm_b0 =norm(b0);
y = zeros(n,1); %Initial point
%y=b0-diag(G);
Fy = zeros(n,1);
k=0;
f_eval = 0;
Iter_Whole = 200;
Iter_inner = 20; % Maximum number of Line Search in Newton method
maxit = 200; %Maximum number of iterations in PCG
iterk = 0;
Inner = 0;
tol = 1.0e-2; %relative accuracy for CGs
sigma_1 = 1.0e-4; %tolerance in the line search of the Newton method
x0 = y;
prec_time = 0;
pcg_time = 0;
eig_time =0;
c = ones(n,1);
d = zeros(n,1);
val_G = sum(sum(G.*G))/2;
X = G + diag(y);
X = (X + X')/2;
eig_time0 = clock;
[P,lambda] = Mymexeig(X); %% X= P*diag(D)*P'
eig_time = eig_time + etime(clock,eig_time0);
[f0,Fy] = gradient(y,lambda,P,b0,n);
Initial_f = val_G - f0;
X = PCA(X,lambda,P,b0,n); %% generate a feasible primal solution by using PCA
val_obj = sum(sum((X - G).*(X - G)))/2;
gap = (val_obj - Initial_f)/(1+ abs(Initial_f) + abs(val_obj));
f = f0;
f_eval = f_eval + 1;
b = b0 - Fy;
norm_b = norm(b);
time_used = etime(clock,t0);
fprintf('Newton-CG: Initial Dual objective function value ======== %d \n', Initial_f)
fprintf('Newton-CG: Initial Primal objective function value ====== %d \n', val_obj)
fprintf('Newton-CG: Norm of Gradient ================= %d \n',norm_b)
fprintf('Newton-CG: Relative Gradient Residue ================= %d \n',norm_b/(1+norm_b0))
fprintf('Newton-CG: computing time used so far ==== =====================%d \n',time_used)
Omega12 = omega_mat(P,lambda,n);
x0 = y;
while (gap > error_tol & norm_b/(1+norm_b0) > error_tol & k< Iter_Whole)
prec_time0 = clock;
c = precond_matrix(Omega12,P,n); % comment this line for no preconditioning
prec_time = prec_time + etime(clock, prec_time0);
pcg_time0 = clock;
[d,flag,relres,iterk] = pre_cg(b,tol,maxit,c,Omega12,P,n);
pcg_time = pcg_time + etime(clock,pcg_time0);
%d = b0-Fy; gradient direction
fprintf('Newton-CG: Number of CG Iterations == %d \n', iterk)
if (flag~=0); % if CG is unsuccessful, use the negative gradient direction
% d =b0-Fy;
disp('..... Not a completed Newton-CG step......')
end
slope = (Fy-b0)'*d; %%% nabla f d
y = x0 + d; %temporary x0+d
X = G + diag(y);
X = (X + X')/2;
eig_time0 = clock;
[P,lambda] = Mymexeig(X); % Eig-decomposition: X =P*diag(D)*P^T
eig_time = eig_time + etime(clock,eig_time0);
[f,Fy] = gradient(y,lambda,P,b0,n);
k_inner = 0;
while(k_inner <=Iter_inner & f> f0 + sigma_1*0.5^k_inner*slope + 1.0e-6)
k_inner = k_inner+1;
y = x0 + 0.5^k_inner*d; % backtracking
X = G + diag(y);
X = (X + X')/2;
eig_time0 = clock;
[P,lambda] = Mymexeig(X); % Eig-decomposition: X =P*diag(D)*P^T
eig_time = eig_time + etime(clock,eig_time0);
[f,Fy] = gradient(y,lambda,P,b0,n);
end % loop for while
f_eval = f_eval + k_inner+1;
x0 = y;
f0 = f;
val_dual = val_G - f0;
X = PCA(X,lambda,P,b0,n);
Dual_f = val_G - f0;
val_obj = sum(sum((X - G).*(X - G)))/2;
gap = (val_obj - val_dual)/(1+ abs(val_dual) + abs(val_obj));
fprintf('Newton-CG: The relative duality gap ============================== %d \n',gap)
fprintf('Newton-CG: The Dual objective function value =========== %d \n', Dual_f)
fprintf('Newton-CG: The primal objective function value ========= %d \n',val_obj)
k=k+1;
b = b0 - Fy;
norm_b = norm(b);
time_used = etime(clock,t0);
fprintf('Newton-CG: Norm of Gradient == %d \n',norm_b);
fprintf('Newton-CG: Relative Gradient Residue ======================= %d \n',norm_b/(1+norm_b0))
fprintf('Newton-CG: computing time used so far ==== =====================%d \n',time_used)
Res_b(k) = norm_b;
Omega12 = omega_mat(P,lambda,n);
end %end loop for while i=1;
rank_X = length(find(max(0,lambda)>0));
Final_f = val_G - f;
X = X + tau*eye(n);
time_used = etime(clock,t0);
fprintf('\n')
%fprintf('Newton: Norm of Gradient %d \n',norm_b)
fprintf('Newton-CG: Number of Iterations == %d \n', k)
fprintf('Newton-CG: Number of Function Evaluations == %d \n', f_eval)
fprintf('Newton-CG: Final Dual Objective Function value ========== %d \n',Final_f)
fprintf('Newton-CG: Final primal Objective Function value ======== %d \n', val_obj)
fprintf('Newton-CG: The final relative duality gap ======================== %d \n',gap)
fprintf('Newton-CG: The rank of the Optimal Solution - tau*I ================= %d \n',rank_X)
fprintf('Newton-CG: computing time for computing preconditioners == %d \n', prec_time)
fprintf('Newton-CG: computing time for linear systems solving (cgs time) ====%d \n', pcg_time)
fprintf('Newton-CG: computing time for eigenvalue decompositions (calling mexeig time)==%d \n', eig_time)
fprintf('Newton-CG: computing time used for equal weights calibration ==== =====================%d \n',time_used)
%%% end of the main program
%%%%%%
%%%%%% To generate F(y) %%%%%%%
%%%%%%%
function [f,Fy]= gradient(y,lambda,P,b0,n)
f = 0.0;
Fy =zeros(n,1);
%lambdap=max(0,lambda);
%H =diag(lambdap); %% H =P^T* H^0.5*H^0.5 *P
P=P';
i=1;
while (i<=n)
P(i,:)=max(lambda(i),0)^0.5*P(i,:);
i=i+1;
end
i=1;
while (i<=n)
Fy(i)=P(:,i)'*P(:,i);
i=i+1;
end
i=1;
while (i<=n)
f =f+(max(lambda(i),0))^2;
i=i+1;
end
f =0.5*f -b0'*y;
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%% end of gradient.m %%%%%%
%%%% use PCA to generate a primal feasible solution %%%
function [X] = PCA(X,lambda,P,b0,n)
Ip = find(lambda>0);
r = length(Ip);
if (r==0)
X =zeros(n,n);
elseif (r==n)
X = X;
elseif (r<=n/2)
lambda1 = lambda(Ip);
lambda1 = lambda1.^0.5;
P1 = P(:, 1:r);
if r >1
P1 = P1*sparse(diag(lambda1));
X = P1*P1'; %
else
X = lambda1^2*P1*P1';
end
else
lambda2 = -lambda(r+1:n);
lambda2 = lambda2.^0.5;
P2 = P(:, r+1:n);
P2 = P2*sparse(diag(lambda2));
X = X + P2*P2';
end
%%% To make X positive semidefinite with diagonal elements exactly b0
d = diag(X);
d = max(b0, d);
X = X - diag( diag(X)) + diag(d); %%% make the diagonal vector to be b0, still PSD
d = d.^(-0.5);
d = d.*(b0.^0.5);
X = X.*(d*d');
return
%%%%%%%%%%%%%% end of PCA %%%
%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% To generate the first -order difference of lambda
%%%%%%%
%%%%%%%%%%%%%% %%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%% To generate the essential part of the first -order difference of d
%%%%%%%
function Omega12 = omega_mat(P,lambda,n)
%We compute omega only for 1<=|idx|<=n-1
idx.idp = find(lambda>0);
idx.idm = setdiff([1:n],idx.idp);
n =length(lambda);
r = length(idx.idp);
if ~isempty(idx.idp)
if (r == n)
Omega12 = ones(n,n);
else
s = n-r;
dp = lambda(1:r);
dn = lambda(r+1:n);
Omega12 = (dp*ones(1,s))./(abs(dp)*ones(1,s) + ones(r,1)*abs(dn'));
% Omega12 = max(1e-15,Omega12);
end
else
Omega12 =[];
end
%%***** perturbation *****
return
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%% end of omega_mat.m %%%%%%%%%%
%%%%%% PCG method %%%%%%%
%%%%%%% This is exactly the algorithm by Hestenes and Stiefel (1952)
%%%%%An iterative method to solve A(x) =b
%%%%%The symmetric positive definite matrix M is a
%%%%%%%%% preconditioner for A.
%%%%%% See Pages 527 and 534 of Golub and va Loan (1996)
function [p,flag,relres,iterk] = pre_cg(b,tol,maxit,c,Omega12,P,n);
% Initializations
r = b; %We take the initial guess x0=0 to save time in calculating A(x0)
n2b =norm(b); % norm of b
tolb = tol * n2b; % relative tolerance
p = zeros(n,1);
flag=1;
iterk =0;
relres=1000; %%% To give a big value on relres
% Precondition
z =r./c; %%%%% z = M\r; here M =diag(c); if M is not the identity matrix
rz1 = r'*z;
rz2 = 1;
d = z;
% CG iteration
for k = 1:maxit
if k > 1
beta = rz1/rz2;
d = z + beta*d;
end
%w= Jacobian_matrix(d,Omega,P,n); %w = A(d);
w = Jacobian_matrix(d,Omega12,P,n); % W =A(d)
denom = d'*w;
iterk =k;
relres = norm(r)/n2b; %relative residue = norm(r) / norm(b)
if denom <= 0
sssss=0
p = d/norm(d); % d is not a descent direction
break % exit
else
alpha = rz1/denom;
p = p + alpha*d;
r = r - alpha*w;
end
z = r./c; % z = M\r; here M =diag(c); if M is not the identity matrix ;
if norm(r) <= tolb % Exit if Hp=b solved within the relative tolerance
iterk =k;
relres = norm(r)/n2b; %relative residue =norm(r) / norm(b)
flag =0;
break
end
rz2 = rz1;
rz1 = r'*z;
end
return
%%%%%%%% %%%%%%%%%%%%%%%
%%% end of pre_cg.m%%%%%%%%%%%
%%%%%% To generate the Jacobain product with x: F'(y)(x) %%%%%%%
%%%%%%%
function Ax = Jacobian_matrix(x,Omega12,P,n)
Ax =zeros(n,1);
[r,s] = size(Omega12);
if (r>0)
% P1 = P(:,1:r);
H1 = P(:,1:r);
if (r< n/2)
%P2 = P(:,r+1:n);
%H1=P1;
i=1;
while (i<=n)
H1(i,:) = x(i)*H1(i,:); % H1=diag(x)*P1
i=i+1;
end
Omega12 = Omega12.*(H1'*P(:,r+1:n));
%H =[(H1'*P1)*P1'+ Omega12*P2';Omega12'*P1']; %%% H= [Omega o (P^T*diag(x)*P)]*P^T
H =[(H1'*P(:,1:r))*(P(:,1:r))'+ Omega12*(P(:,r+1:n))';Omega12'*(P(:,1:r))']; %%% H= [Omega o (P^T*diag(x)*P)]*P^T
i=1;
while (i<=n)
Ax(i)=P(i,:)*H(:,i);
Ax(i) = Ax(i) + 1.0e-10*x(i); % add a small perturbation
i=i+1;
end
else % r >n/2
if (r==n)
Ax =(1+1.0e-10)*x;
else
%P2 = P(:,r+1:n);
H2 = P(:,r+1:n);
i=1;
while (i<=n)
H2(i,:) = x(i)*H2(i,:); % H2=diag(x)*P2
i=i+1;
end
Omega12 = ones(r,s) - Omega12;
Omega12 = Omega12.*((P(:,1:r))'*H2);
H =[Omega12* (P(:,r+1:n))';Omega12'*(P(:,1:r))'+ ( (P(:,r+1:n))'*H2)* (P(:,r+1:n))']; %%% Assign H*P' to H= [(ones(n,n)-Omega) o (P^T*diag(x)*P)]*P^T
i=1;
while (i<=n)
Ax(i)= -P(i,:)*H(:,i);
Ax(i) = x(i) + Ax(i) + 1.0e-10*x(i); % add a small perturbation
i=i+1;
end
end
end
end
return
%%%%%%%%%%%%%%%
%end of Jacobian_matrix.m%%%
%%%%%% To generate the diagonal preconditioner%%%%%%%
%%%%%%%
function c = precond_matrix(Omega12,P,n)
[r,s] =size(Omega12);
c = ones(n,1);
if (r>0)
if (r< n/2)
H = P';
H = H.*H;
H12 = H(1:r,:)'*Omega12;
d =ones(r,1);
for i=1:n
c(i) = sum(H(1:r,i))*(d'*H(1:r,i));
c(i) = c(i) + 2.0*(H12(i,:)*H(r+1:n,i));
if c(i) < 1.0e-8
c(i) =1.0e-8;
end
end
else % if r>=n/2, use a complementary formula
if (r < n)
H = P';
H = H.*H;
Omega12 = ones(r,s)-Omega12;
H12 = Omega12*H(r+1:n,:);
d =ones(s,1);
dd = ones(n,1);
for i=1:n
c(i) = sum(H(r+1:n,i))*(d'*H(r+1:n,i));
c(i) = c(i) + 2.0*(H(1:r,i)'*H12(:,i));
alpha = sum(H(:,i));
c(i) = alpha*(H(:,i)'*dd)-c(i);
if c(i) < 1.0e-8
c(i) =1.0e-8;
end
end
end
end
end
return
%%%%%%%%%%%%%%%
%end of precond_matrix.m%%%
%
function [P,lambda] = Mymexeig(X)
if (exist('mexeig')==3)
[P,D] = mexeig(full(X));
if size(D,2)>1
lambda =diag(D);
else
lambda =D;
end
else
[P,D] = eig(full(X));
lambda = diag(D);
end
P = real(P);
lambda = real(lambda);
if issorted(lambda)
lambda = lambda(end:-1:1);
P = P(:,end:-1:1);
elseif issorted(lambda(end:-1:1))
return;
else
[lambda, Inx] = sort(lambda,'descend');
P = P(:,Inx);
end
return
%*********************** End of Mymexeig.m ********************************