-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfcnc_dnn_622_weight.py
174 lines (147 loc) · 5.5 KB
/
fcnc_dnn_622_weight.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
import keras
import numpy as np
from keras import models
from keras import layers
from keras import optimizers
from keras import losses
from keras import metrics
from keras import regularizers
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix
from sklearn.metrics import precision_score, recall_score, f1_score
from sklearn.metrics import roc_curve
from sklearn.metrics import roc_auc_score
ReadData = np.loadtxt("eventcollect_STZct.csv", delimiter=",")
### train : validation : test = 6 : 2 : 2
num_of_data = len(ReadData)
print("Total number of data : ", num_of_data)
num_of_tr_val = (num_of_data // 5)*4
print("Number of test data : ", num_of_data - num_of_tr_val)
## Divide data and label
#origin_data = np.zeros((num_of_data, 41)) # For TT
origin_data = np.zeros((num_of_data, 25)) # For ST
origin_label = np.zeros(num_of_data)
origin_weight = np.zeros(num_of_data)
for i in range(0, num_of_data):
origin_data[i] = ReadData[i][1:-1]
origin_label[i] = ReadData[i][0]
origin_weight[i] = ReadData[i][-1]
## Shuffle
idx = np.arange(origin_label.shape[0])
np.random.shuffle(idx)
origin_data = origin_data[idx]
origin_label = origin_label[idx]
origin_weight = origin_weight[idx]
## Data preparation
(train_data, train_label, train_weight), (test_data, test_label, test_weight) = (origin_data[:num_of_tr_val], origin_label[:num_of_tr_val], origin_weight[:num_of_tr_val]), (origin_data[num_of_tr_val:], origin_label[num_of_tr_val:], origin_weight[num_of_tr_val:])
#list_train_weight = train_weight.tolist()
train_data = np.array(train_data, dtype='float32')
test_data = np.asarray(test_data, dtype='float32')
train_label = np.asarray(train_label).astype('float32')
test_label = np.asarray(test_label).astype('float32')
train_weight = np.asarray(train_weight).astype('float32')
test_weight = np.asarray(test_weight).astype('float32')
## Data normalize
mean = train_data.mean(axis=0)
train_data -= mean
std = train_data.std(axis=0)
train_data /= std
test_data -= mean
test_data /= std
## Model
model = models.Sequential()
model.add(layers.Dense(32, activation='relu', input_shape=(train_data.shape[1],)))
#model.add(layers.Dropout(0.5))
#model.add(layers.BatchNormalization())
model.add(layers.Dense(64, activation='relu'))
#model.add(layers.Dropout(0.5))
#model.add(layers.BatchNormalization())
model.add(layers.Dense(64, activation='relu'))
#model.add(layers.Dropout(0.5))
#model.add(layers.BatchNormalization())
model.add(layers.Dense(32, activation='relu'))
#model.add(layers.Dropout(0.5))
#model.add(layers.BatchNormalization())
model.add(layers.Dense(1, activation='sigmoid'))
model.summary()
model.compile(optimizer='adam',loss='binary_crossentropy',metrics=['accuracy'])
## Divide small set from train to monitor the model
realnum_train = len(train_data)
num_val = realnum_train // 4
print("Number of train data : ", realnum_train - num_val)
print("Number of val data : ", num_val)
val_data = train_data[:num_val]
partial_train_data = train_data[num_val:]
val_label = train_label[:num_val]
partial_train_label = train_label[num_val:]
val_weight = train_weight[:num_val]
partial_train_weight = train_weight[num_val:]
ptw_mean = partial_train_weight.mean(axis=0)
partial_train_weight -= ptw_mean
partial_train_weight += 1.
#ptw_std = partial_train_weight.std(axis=0)
#partial_train_weight /= ptw_std
history = model.fit(partial_train_data, partial_train_label, epochs=50, batch_size=512, validation_data=(val_data, val_label), sample_weight=partial_train_weight)
print("Training is Finished!")
## Draw ROC
test_pred = model.predict(test_data)
FPR, TPR, _ = roc_curve(test_label, test_pred)
plt.plot(FPR, TPR)
plt.plot([0,1],[0,1],'--', color='black') # 대각선
plt.title('ROC Curve')
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.savefig('ROC_curve_ST_Zct.png')
plt.clf()
aucscore = roc_auc_score(test_label, test_pred)
print("AUC score is : ", aucscore)
test_label_1 = test_label.reshape((num_of_data - num_of_tr_val, 1))
print(test_label_1)
test_pred_1 = np.where( test_pred < 0.5 , 0. , np.where( test_pred >= 0.5, 1. , test_pred))
print(test_pred_1)
cm = confusion_matrix(test_label_1, test_pred_1)
print("Confusion matrix : ", cm)
precision = precision_score(test_label_1, test_pred_1)
recall = recall_score(test_label_1, test_pred_1)
f1score = f1_score(test_label_1, test_pred_1)
print("Precision score : ", precision)
print("Recall score : ", recall)
print("f1 score : ", f1score)
## Plotting acc and loss
history_dict = history.history
history_dict.keys()
acc = history.history['acc']
val_acc = history.history['val_acc']
loss = history.history['loss']
val_loss = history.history['val_loss']
epochs = range(1, len(acc)+1)
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.plot(epochs, val_loss, 'r', label='Validation loss')
plt.title('Training and validation loss')
plt.xlabel('Epochs')
plt.ylabel('Loss')
plt.legend()
plt.savefig('ST_Zct_loss_622.png')
plt.clf()
acc = history_dict['acc']
val_acc = history_dict['val_acc']
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.plot(epochs, val_acc, 'r', label='Validation acc')
plt.title('Training and validation accuracy')
plt.xlabel('Epochs')
plt.ylabel('Accuracy')
plt.legend()
plt.savefig('ST_Zct_acc_622.png')
## Result
results = model.evaluate(test_data, test_label)
print(results)
model.save('ST_Zct.h5')
## Monitor output value
prediction = model.predict(test_data)
#part_prediction = prediction[:500]
#print(part_prediction)
plt.clf()
plt.hist(prediction, range=(0., 1.), bins=20)
plt.xlabel('Sigmoid output')
plt.ylabel('Events')
plt.savefig('ST_Zct_dist.png')