-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathimage_target_oda.py
459 lines (392 loc) · 17.9 KB
/
image_target_oda.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
import argparse
import os, sys
import os.path as osp
import torchvision
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import transforms
import network, loss
from torch.utils.data import DataLoader
from data_list import ImageList, ImageList_idx
import random, pdb, math, copy
from tqdm import tqdm
from scipy.spatial.distance import cdist
from sklearn.metrics import confusion_matrix
from sklearn.cluster import KMeans
from loss import KnowledgeDistillationLoss
def op_copy(optimizer):
for param_group in optimizer.param_groups:
param_group['lr0'] = param_group['lr']
return optimizer
def lr_scheduler(optimizer, iter_num, max_iter, gamma=10, power=0.75):
decay = (1 + gamma * iter_num / max_iter) ** (-power)
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr0'] * decay
param_group['weight_decay'] = 1e-3
param_group['momentum'] = 0.9
param_group['nesterov'] = True
return optimizer
def image_train(resize_size=256, crop_size=224, alexnet=False):
if not alexnet:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
else:
normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
return transforms.Compose([
transforms.Resize((resize_size, resize_size)),
transforms.RandomCrop(crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
def image_test(resize_size=256, crop_size=224, alexnet=False):
if not alexnet:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
else:
normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
return transforms.Compose([
transforms.Resize((resize_size, resize_size)),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
normalize
])
def data_load(args):
## prepare data
dsets = {}
dset_loaders = {}
train_bs = args.batch_size
txt_src = open(args.s_dset_path).readlines()
txt_tar = open(args.t_dset_path).readlines()
txt_test = open(args.test_dset_path).readlines()
if not args.da == 'uda':
label_map_s = {}
for i in range(len(args.src_classes)):
label_map_s[args.src_classes[i]] = i
new_tar = []
for i in range(len(txt_tar)):
rec = txt_tar[i]
reci = rec.strip().split(' ')
if int(reci[1]) in args.tar_classes:
if int(reci[1]) in args.src_classes:
line = reci[0] + ' ' + str(label_map_s[int(reci[1])]) + '\n'
new_tar.append(line)
else:
line = reci[0] + ' ' + str(len(label_map_s)) + '\n'
new_tar.append(line)
txt_tar = new_tar.copy()
txt_test = txt_tar.copy()
dsets["target"] = ImageList_idx(txt_tar, transform=image_train())
dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, shuffle=True, num_workers=args.worker,
drop_last=False)
dsets["test"] = ImageList(txt_test, transform=image_test())
dset_loaders["test"] = DataLoader(dsets["test"], batch_size=train_bs * 3, shuffle=False, num_workers=args.worker,
drop_last=False)
return dset_loaders
def cal_acc(loader, netF, netB, netC, flag=False, threshold=0.1):
start_test = True
with torch.no_grad():
iter_test = iter(loader)
for i in range(len(loader)):
data = iter_test.next()
inputs = data[0]
labels = data[1]
inputs = inputs.cuda()
outputs = netC(netB(netF(inputs)))
if start_test:
all_output = outputs.float().cpu()
all_label = labels.float()
start_test = False
else:
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
mean_ent = torch.mean(loss.Entropy(nn.Softmax(dim=1)(all_output))).cpu().data.item()
if flag:
all_output = nn.Softmax(dim=1)(all_output)
ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1) / np.log(args.class_num)
from sklearn.cluster import KMeans
kmeans = KMeans(2, random_state=0).fit(ent.reshape(-1, 1))
labels = kmeans.predict(ent.reshape(-1, 1))
idx = np.where(labels == 1)[0]
iidx = 0
if ent[idx].mean() > ent.mean():
iidx = 1
predict[np.where(labels == iidx)[0]] = args.class_num
matrix = confusion_matrix(all_label, torch.squeeze(predict).float())
matrix = matrix[np.unique(all_label).astype(int), :]
acc = matrix.diagonal() / matrix.sum(axis=1) * 100
unknown_acc = acc[-1:].item()
return np.mean(acc[:-1]), np.mean(acc), unknown_acc
else:
return accuracy * 100, mean_ent
def print_args(args):
s = "==========================================\n"
for arg, content in args.__dict__.items():
s += "{}:{}\n".format(arg, content)
return s
def train_target(args):
dset_loaders = data_load(args)
## set base network
if args.net[0:3] == 'res':
netF = network.ResBase(res_name=args.net).cuda()
elif args.net[0:3] == 'vgg':
netF = network.VGGBase(vgg_name=args.net).cuda()
else:
netF = network.ViT().cuda()
netB = network.feat_bootleneck(type=args.classifier, feature_dim=netF.in_features,
bottleneck_dim=args.bottleneck).cuda()
netC = network.feat_classifier(type=args.layer, class_num=args.class_num, bottleneck_dim=args.bottleneck).cuda()
args.modelpath = args.output_dir_src + '/source_F.pt'
netF.load_state_dict(torch.load(args.modelpath))
args.modelpath = args.output_dir_src + '/source_B.pt'
netB.load_state_dict(torch.load(args.modelpath))
args.modelpath = args.output_dir_src + '/source_C.pt'
netC.load_state_dict(torch.load(args.modelpath))
netC.eval()
for k, v in netC.named_parameters():
v.requires_grad = False
### add teacher module
if args.net[0:3] == 'res':
netF_t = network.ResBase(res_name=args.net, se=args.se, nl=args.nl).cuda()
elif args.net[0:3] == 'vgg':
netF_t = network.VGGBase(vgg_name=args.net).cuda()
elif args.net == 'vit':
netF_t = network.ViT().cuda()
netB_t = network.feat_bootleneck(type=args.classifier, feature_dim=netF.in_features,
bottleneck_dim=args.bottleneck).cuda()
### initial from student
netF_t.load_state_dict(netF.state_dict())
netB_t.load_state_dict(netB.state_dict())
### remove grad
for k, v in netF_t.named_parameters():
v.requires_grad = False
for k, v in netB_t.named_parameters():
v.requires_grad = False
param_group = []
for k, v in netF.named_parameters():
if args.lr_decay1 > 0:
param_group += [{'params': v, 'lr': args.lr * args.lr_decay1}]
else:
v.requires_grad = False
for k, v in netB.named_parameters():
if args.lr_decay2 > 0:
param_group += [{'params': v, 'lr': args.lr * args.lr_decay2}]
else:
v.requires_grad = False
optimizer = optim.SGD(param_group)
optimizer = op_copy(optimizer)
tt = 0
iter_num = 0
max_iter = args.max_epoch * len(dset_loaders["target"])
interval_iter = max_iter // args.interval
while iter_num < max_iter:
try:
inputs_test, _, tar_idx = iter_test.next()
except:
iter_test = iter(dset_loaders["target"])
inputs_test, _, tar_idx = iter_test.next()
if inputs_test.size(0) == 1:
continue
if iter_num % interval_iter == 0:
netF.eval()
netB.eval()
mem_label, ENT_THRESHOLD,dd = obtain_label(dset_loaders['test'], netF_t, netB_t, netC, args)
mem_label = torch.from_numpy(mem_label).cuda()
netF.train()
netB.train()
inputs_test = inputs_test.cuda()
iter_num += 1
lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter)
pred = mem_label[tar_idx]
features_test = netB(netF(inputs_test))
outputs_test = netC(features_test)
softmax_out = nn.Softmax(dim=1)(outputs_test)
outputs_test_known = outputs_test[pred < args.class_num, :]
pred = pred[pred < args.class_num]
pred_soft = dd[tar_idx]
pred_soft = torch.tensor(pred_soft).cuda()
if len(pred) == 0:
print(tt)
del features_test
del outputs_test
tt += 1
continue
if args.cls_par > 0:
classifier_loss = nn.CrossEntropyLoss()(outputs_test_known, pred)
classifier_loss *= args.cls_par
if args.kd:
kd_loss = KnowledgeDistillationLoss()(outputs_test, pred_soft)
classifier_loss += kd_loss
else:
classifier_loss = torch.tensor(0.0).cuda()
if args.ent:
softmax_out_known = nn.Softmax(dim=1)(outputs_test_known)
entropy_loss = torch.mean(loss.Entropy(softmax_out_known))
if args.gent:
msoftmax = softmax_out.mean(dim=0)
gentropy_loss = torch.sum(-msoftmax * torch.log(msoftmax + args.epsilon))
entropy_loss -= gentropy_loss
classifier_loss += entropy_loss * args.ent_par
# EMA update for the teacher
with torch.no_grad():
m = 0.001 # momentum parameter
for param_q, param_k in zip(netF.parameters(), netF_t.parameters()):
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
for param_q, param_k in zip(netB.parameters(), netB_t.parameters()):
param_k.data.mul_(m).add_((1 - m) * param_q.detach().data)
optimizer.zero_grad()
classifier_loss.backward()
optimizer.step()
if iter_num % interval_iter == 0 or iter_num == max_iter:
netF.eval()
netB.eval()
acc_os1, acc_os2, acc_unknown = cal_acc(dset_loaders['test'], netF, netB, netC, True, ENT_THRESHOLD)
log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}% / {:.2f}% / {:.2f}%'.format(args.name, iter_num,
max_iter, acc_os2, acc_os1,
acc_unknown)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str + '\n')
netF.train()
netB.train()
if args.issave:
torch.save(netF.state_dict(), osp.join(args.output_dir, "target_F_" + args.savename + ".pt"))
torch.save(netB.state_dict(), osp.join(args.output_dir, "target_B_" + args.savename + ".pt"))
torch.save(netC.state_dict(), osp.join(args.output_dir, "target_C_" + args.savename + ".pt"))
return netF, netB, netC
def obtain_label(loader, netF, netB, netC, args):
start_test = True
with torch.no_grad():
iter_test = iter(loader)
for _ in range(len(loader)):
data = iter_test.next()
inputs = data[0]
labels = data[1]
inputs = inputs.cuda()
feas = netB(netF(inputs))
outputs = netC(feas)
if start_test:
all_fea = feas.float().cpu()
all_output = outputs.float().cpu()
all_label = labels.float()
start_test = False
else:
all_fea = torch.cat((all_fea, feas.float().cpu()), 0)
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
all_output = nn.Softmax(dim=1)(all_output)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
if args.distance == 'cosine':
all_fea = torch.cat((all_fea, torch.ones(all_fea.size(0), 1)), 1)
all_fea = (all_fea.t() / torch.norm(all_fea, p=2, dim=1)).t()
ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1) / np.log(args.class_num)
ent = ent.float().cpu()
from sklearn.cluster import KMeans
kmeans = KMeans(2, random_state=0).fit(ent.reshape(-1, 1))
labels = kmeans.predict(ent.reshape(-1, 1))
idx = np.where(labels == 1)[0]
iidx = 0
if ent[idx].mean() > ent.mean():
iidx = 1
known_idx = np.where(kmeans.labels_ != iidx)[0]
all_fea = all_fea[known_idx, :]
all_output = all_output[known_idx, :]
predict = predict[known_idx]
all_label_idx = all_label[known_idx]
ENT_THRESHOLD = (kmeans.cluster_centers_).mean()
all_fea = all_fea.float().cpu().numpy()
K = all_output.size(1)
aff = all_output.float().cpu().numpy()
initc = aff.transpose().dot(all_fea)
initc = initc / (1e-8 + aff.sum(axis=0)[:, None])
cls_count = np.eye(K)[predict].sum(axis=0)
labelset = np.where(cls_count > args.threshold)
labelset = labelset[0]
dd = cdist(all_fea, initc[labelset], args.distance)
pred_label = dd.argmin(axis=1)
pred_label = labelset[pred_label]
for round in range(1):
aff = np.eye(K)[pred_label]
initc = aff.transpose().dot(all_fea)
initc = initc / (1e-8 + aff.sum(axis=0)[:, None])
dd = cdist(all_fea, initc[labelset], args.distance)
pred_label = dd.argmin(axis=1)
pred_label = labelset[pred_label]
guess_label = args.class_num * np.ones(len(all_label), )
guess_label[known_idx] = pred_label
D =np.ones((len(all_label),dd.shape[1] ))
D[known_idx] = dd
acc = np.sum(guess_label == all_label.float().numpy()) / len(all_label_idx)
log_str = 'Threshold = {:.2f}, Accuracy = {:.2f}% -> {:.2f}%'.format(ENT_THRESHOLD, accuracy * 100, acc * 100)
return guess_label.astype('int'), ENT_THRESHOLD,D
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='SHOT')
parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
parser.add_argument('--s', type=int, default=0, help="source")
parser.add_argument('--t', type=int, default=1, help="target")
parser.add_argument('--max_epoch', type=int, default=15, help="max iterations")
parser.add_argument('--interval', type=int, default=15)
parser.add_argument('--batch_size', type=int, default=64, help="batch_size")
parser.add_argument('--worker', type=int, default=4, help="number of workers")
parser.add_argument('--dset', type=str, default='office-home', choices=['office-home'])
parser.add_argument('--lr', type=float, default=1e-2, help="learning rate")
parser.add_argument('--net', type=str, default='vit', help="vgg16, resnet50, resnet101")
parser.add_argument('--seed', type=int, default=2020, help="random seed")
parser.add_argument('--gent', type=bool, default=True)
parser.add_argument('--ent', type=bool, default=True)
parser.add_argument('--kd', type=bool, default=False)
parser.add_argument('--threshold', type=int, default=0)
parser.add_argument('--cls_par', type=float, default=0.3)
parser.add_argument('--ent_par', type=float, default=1.0)
parser.add_argument('--lr_decay1', type=float, default=0.1)
parser.add_argument('--lr_decay2', type=float, default=1.0)
parser.add_argument('--bottleneck', type=int, default=256)
parser.add_argument('--epsilon', type=float, default=1e-5)
parser.add_argument('--layer', type=str, default="wn", choices=["linear", "wn"])
parser.add_argument('--classifier', type=str, default="bn", choices=["ori", "bn"])
parser.add_argument('--distance', type=str, default='cosine', choices=["euclidean", "cosine"])
parser.add_argument('--output', type=str, default='san')
parser.add_argument('--output_src', type=str, default='san')
parser.add_argument('--da', type=str, default='oda', choices=['oda'])
parser.add_argument('--issave', type=bool, default=True)
args = parser.parse_args()
if args.dset == 'office-home':
names = ['Art', 'Clipart', 'Product', 'RealWorld']
args.class_num = 65
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
SEED = args.seed
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
# torch.backends.cudnn.deterministic = True
for i in range(len(names)):
if i == args.s:
continue
args.t = i
folder = './data/'
args.s_dset_path = folder + args.dset + '/' + names[args.s] + '_list.txt'
args.t_dset_path = folder + args.dset + '/' + names[args.t] + '_list.txt'
args.test_dset_path = args.t_dset_path
if args.dset == 'office-home':
if args.da == 'oda':
args.class_num = 25
args.src_classes = [i for i in range(25)]
args.tar_classes = [i for i in range(65)]
args.output_dir_src = osp.join(args.output_src, args.da, args.dset, names[args.s][0].upper())
args.output_dir = osp.join(args.output, args.da, args.dset, names[args.s][0].upper() + names[args.t][0].upper())
args.name = names[args.s][0].upper() + names[args.t][0].upper()
if not osp.exists(args.output_dir):
os.system('mkdir -p ' + args.output_dir)
if not osp.exists(args.output_dir):
os.mkdir(args.output_dir)
args.savename = 'par_' + str(args.cls_par)
args.out_file = open(osp.join(args.output_dir, 'log_' + args.savename + '.txt'), 'w')
args.out_file.write(print_args(args) + '\n')
args.out_file.flush()
train_target(args)