-
Notifications
You must be signed in to change notification settings - Fork 6
/
image_pretrained.py
295 lines (252 loc) · 11.1 KB
/
image_pretrained.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import argparse
import os, sys
import os.path as osp
import torchvision
from torchvision import transforms
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
import network, loss
from torch.utils.data import DataLoader
from data_list import ImageList, ImageList_idx
import random, pdb, math, copy
from tqdm import tqdm
from scipy.spatial.distance import cdist
from sklearn.metrics import confusion_matrix
def op_copy(optimizer):
for param_group in optimizer.param_groups:
param_group['lr0'] = param_group['lr']
return optimizer
def lr_scheduler(optimizer, iter_num, max_iter, gamma=10, power=0.75):
decay = (1 + gamma * iter_num / max_iter) ** (-power)
for param_group in optimizer.param_groups:
param_group['lr'] = param_group['lr0'] * decay
param_group['weight_decay'] = 1e-3
param_group['momentum'] = 0.9
param_group['nesterov'] = True
return optimizer
def image_train(resize_size=256, crop_size=224, alexnet=False):
if not alexnet:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
else:
normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
return transforms.Compose([
transforms.Resize((resize_size, resize_size)),
transforms.RandomCrop(crop_size),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize
])
def image_test(resize_size=256, crop_size=224, alexnet=False):
if not alexnet:
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
else:
normalize = Normalize(meanfile='./ilsvrc_2012_mean.npy')
return transforms.Compose([
transforms.Resize((resize_size, resize_size)),
transforms.CenterCrop(crop_size),
transforms.ToTensor(),
normalize
])
def data_load(args):
dsets = {}
dset_loaders = {}
train_bs = args.batch_size
txt_tar = open(args.t_dset_path).readlines()
txt_test = open(args.test_dset_path).readlines()
dsets["target"] = ImageList_idx(txt_tar, transform=image_train())
dset_loaders["target"] = DataLoader(dsets["target"], batch_size=train_bs, shuffle=True, num_workers=args.worker, drop_last=False)
dsets["test"] = ImageList_idx(txt_test, transform=image_test())
dset_loaders["test"] = DataLoader(dsets["test"], batch_size=train_bs*3, shuffle=False, num_workers=args.worker, drop_last=False)
return dset_loaders
def cal_acc(loader, net, flag=False):
start_test = True
with torch.no_grad():
iter_test = iter(loader)
for i in range(len(loader)):
data = iter_test.next()
inputs = data[0]
labels = data[1]
inputs = inputs.cuda()
_, outputs = net(inputs)
if start_test:
all_output = outputs.float().cpu()
all_label = labels.float()
start_test = False
else:
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
_, predict = torch.max(all_output, 1)
all_output = nn.Softmax(dim=1)(all_output)
ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1) / np.log(all_output.size(1))
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
mean_ent = torch.mean(loss.Entropy(nn.Softmax(dim=1)(all_output))).cpu().data.item()
return accuracy, mean_ent
def train_target(args):
dset_loaders = data_load(args)
netF = network.Res50().cuda()
param_group = []
for k, v in netF.named_parameters():
if k.__contains__("fc"):
v.requires_grad = False
else:
param_group += [{'params': v, 'lr': args.lr*args.lr_decay1}]
optimizer = optim.SGD(param_group)
optimizer = op_copy(optimizer)
max_iter = args.max_epoch * len(dset_loaders["target"])
interval_iter = max_iter // args.interval
iter_num = 0
netF.train()
while iter_num < max_iter:
try:
inputs_test, _, tar_idx = iter_test.next()
except:
iter_test = iter(dset_loaders["target"])
inputs_test, _, tar_idx = iter_test.next()
if inputs_test.size(0) == 1:
continue
if iter_num % interval_iter == 0 and args.cls_par > 0:
netF.eval()
mem_label = obtain_label(dset_loaders['test'], netF, args)
mem_label = torch.from_numpy(mem_label).cuda()
netF.train()
inputs_test = inputs_test.cuda()
iter_num += 1
lr_scheduler(optimizer, iter_num=iter_num, max_iter=max_iter)
features_test, outputs_test = netF(inputs_test)
if args.cls_par > 0:
pred = mem_label[tar_idx]
classifier_loss = nn.CrossEntropyLoss()(outputs_test, pred)
classifier_loss *= args.cls_par
else:
classifier_loss = torch.tensor(0.0).cuda()
if args.ent:
softmax_out = nn.Softmax(dim=1)(outputs_test)
entropy_loss = torch.mean(loss.Entropy(softmax_out))
if args.gent:
msoftmax = softmax_out.mean(dim=0)
gentropy_loss = torch.sum(-msoftmax * torch.log(msoftmax + args.epsilon))
entropy_loss -= gentropy_loss
classifier_loss += entropy_loss * args.ent_par
optimizer.zero_grad()
classifier_loss.backward()
optimizer.step()
if iter_num % interval_iter == 0 or iter_num == max_iter:
netF.eval()
acc, ment = cal_acc(dset_loaders['test'], netF)
log_str = 'Task: {}, Iter:{}/{}; Accuracy = {:.2f}%'.format(args.dset, iter_num, max_iter, acc*100)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str+'\n')
netF.train()
if args.issave:
torch.save(netF.state_dict(), osp.join(args.output_dir, "target" + args.savename + ".pt"))
return netF
def print_args(args):
s = "==========================================\n"
for arg, content in args.__dict__.items():
s += "{}:{}\n".format(arg, content)
return s
def obtain_label(loader, net, args):
start_test = True
with torch.no_grad():
iter_test = iter(loader)
for _ in range(len(loader)):
data = iter_test.next()
inputs = data[0]
labels = data[1]
inputs = inputs.cuda()
feas, outputs = net(inputs)
if start_test:
all_fea = feas.float().cpu()
all_output = outputs.float().cpu()
all_label = labels.float()
start_test = False
else:
all_fea = torch.cat((all_fea, feas.float().cpu()), 0)
all_output = torch.cat((all_output, outputs.float().cpu()), 0)
all_label = torch.cat((all_label, labels.float()), 0)
all_output = nn.Softmax(dim=1)(all_output)
ent = torch.sum(-all_output * torch.log(all_output + args.epsilon), dim=1)
unknown_weight = 1 - ent / np.log(args.class_num)
_, predict = torch.max(all_output, 1)
accuracy = torch.sum(torch.squeeze(predict).float() == all_label).item() / float(all_label.size()[0])
if args.distance == 'cosine':
all_fea = torch.cat((all_fea, torch.ones(all_fea.size(0), 1)), 1)
all_fea = (all_fea.t() / torch.norm(all_fea, p=2, dim=1)).t()
all_fea = all_fea.float().cpu().numpy()
K = all_output.size(1)
aff = all_output.float().cpu().numpy()
initc = aff.transpose().dot(all_fea)
initc = initc / (1e-8 + aff.sum(axis=0)[:,None])
cls_count = np.eye(K)[predict].sum(axis=0)
labelset = np.where(cls_count>args.threshold)
labelset = labelset[0]
# print(labelset)
dd = cdist(all_fea, initc[labelset], args.distance)
pred_label = dd.argmin(axis=1)
pred_label = labelset[pred_label]
for round in range(1):
aff = np.eye(K)[pred_label]
initc = aff.transpose().dot(all_fea)
initc = initc / (1e-8 + aff.sum(axis=0)[:,None])
dd = cdist(all_fea, initc[labelset], args.distance)
pred_label = dd.argmin(axis=1)
pred_label = labelset[pred_label]
acc = np.sum(pred_label == all_label.float().numpy()) / len(all_fea)
log_str = 'Accuracy = {:.2f}% -> {:.2f}%'.format(accuracy*100, acc*100)
args.out_file.write(log_str + '\n')
args.out_file.flush()
print(log_str+'\n')
return pred_label.astype('int') #, labelset
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='SHOT')
parser.add_argument('--gpu_id', type=str, nargs='?', default='0', help="device id to run")
parser.add_argument('--max_epoch', type=int, default=15, help="max iterations")
parser.add_argument('--interval', type=int, default=15, help="max iterations")
parser.add_argument('--batch_size', type=int, default=64, help="batch_size")
parser.add_argument('--worker', type=int, default=4, help="number of workers")
parser.add_argument('--distance', type=str, default='cosine', choices=["euclidean", "cosine"])
parser.add_argument('--dset', type=str, default='imagenet_caltech', choices=['imagenet_caltech'])
parser.add_argument('--lr', type=float, default=1e-2, help="learning rate")
parser.add_argument('--net', type=str, default='resnet50', help="vgg16, resnet50, resnet101")
parser.add_argument('--seed', type=int, default=2019, help="random seed")
parser.add_argument('--epsilon', type=float, default=1e-5)
parser.add_argument('--gent', type=bool, default=False)
parser.add_argument('--ent', type=bool, default=True)
parser.add_argument('--threshold', type=int, default=30)
parser.add_argument('--cls_par', type=float, default=0.3)
parser.add_argument('--ent_par', type=float, default=1.0)
parser.add_argument('--output', type=str, default='seed')
parser.add_argument('--da', type=str, default='pda', choices=['pda'])
parser.add_argument('--issave', type=bool, default=True)
parser.add_argument('--lr_decay1', type=float, default=0.1)
args = parser.parse_args()
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu_id
SEED = args.seed
torch.manual_seed(SEED)
torch.cuda.manual_seed(SEED)
np.random.seed(SEED)
random.seed(SEED)
# torch.backends.cudnn.deterministic = True
args.class_num = 1000
folder = './data/'
if args.da == 'pda':
args.t_dset_path = folder + args.dset + '/' + 'caltech_84' + '_list.txt'
args.test_dset_path = args.t_dset_path
args.output_dir = osp.join(args.output, args.da, args.dset)
args.name = args.dset
if not osp.exists(args.output_dir):
os.system('mkdir -p ' + args.output_dir)
if not osp.exists(args.output_dir):
os.mkdir(args.output_dir)
args.savename = 'par_' + str(args.cls_par)
if args.da == 'pda':
args.savename = 'par_' + str(args.cls_par) + '_thr' + str(args.threshold)
args.out_file = open(osp.join(args.output_dir, 'log_' + args.savename + '.txt'), 'w')
args.out_file.write(print_args(args)+'\n')
args.out_file.flush()
train_target(args)