-
Notifications
You must be signed in to change notification settings - Fork 1.7k
/
Copy pathsummary_algorithms.py
179 lines (131 loc) · 4.61 KB
/
summary_algorithms.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import functools
from typing import Any, Callable, Optional, Tuple, TypeVar
import numpy as np
import pandas as pd
from multimethod import multimethod
from scipy.stats import chisquare
from pandas_profiling.config import Settings
T = TypeVar("T")
def func_nullable_series_contains(fn: Callable) -> Callable:
@functools.wraps(fn)
def inner(
config: Settings, series: pd.Series, state: dict, *args, **kwargs
) -> bool:
if series.hasnans:
series = series.dropna()
if series.empty:
return False
return fn(config, series, state, *args, **kwargs)
return inner
def histogram_compute(
config: Settings,
finite_values: np.ndarray,
n_unique: int,
name: str = "histogram",
weights: Optional[np.ndarray] = None,
) -> dict:
stats = {}
bins = config.plot.histogram.bins
bins_arg = "auto" if bins == 0 else min(bins, n_unique)
stats[name] = np.histogram(finite_values, bins=bins_arg, weights=weights)
max_bins = config.plot.histogram.max_bins
if bins_arg == "auto" and len(stats[name][1]) > max_bins:
stats[name] = np.histogram(finite_values, bins=max_bins, weights=None)
return stats
def chi_square(
values: Optional[np.ndarray] = None, histogram: Optional[np.ndarray] = None
) -> dict:
if histogram is None:
histogram, _ = np.histogram(values, bins="auto")
return dict(chisquare(histogram)._asdict())
def series_hashable(
fn: Callable[[Settings, pd.Series, dict], Tuple[Settings, pd.Series, dict]]
) -> Callable[[Settings, pd.Series, dict], Tuple[Settings, pd.Series, dict]]:
@functools.wraps(fn)
def inner(
config: Settings, series: pd.Series, summary: dict
) -> Tuple[Settings, pd.Series, dict]:
if not summary["hashable"]:
return config, series, summary
return fn(config, series, summary)
return inner
def series_handle_nulls(
fn: Callable[[Settings, pd.Series, dict], Tuple[Settings, pd.Series, dict]]
) -> Callable[[Settings, pd.Series, dict], Tuple[Settings, pd.Series, dict]]:
"""Decorator for nullable series"""
@functools.wraps(fn)
def inner(
config: Settings, series: pd.Series, summary: dict
) -> Tuple[Settings, pd.Series, dict]:
if series.hasnans:
series = series.dropna()
return fn(config, series, summary)
return inner
def named_aggregate_summary(series: pd.Series, key: str) -> dict:
summary = {
f"max_{key}": np.max(series),
f"mean_{key}": np.mean(series),
f"median_{key}": np.median(series),
f"min_{key}": np.min(series),
}
return summary
@multimethod
def describe_counts(
config: Settings, series: Any, summary: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()
@multimethod
def describe_supported(
config: Settings, series: Any, series_description: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()
@multimethod
def describe_generic(
config: Settings, series: Any, summary: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()
@multimethod
def describe_numeric_1d(
config: Settings, series: Any, summary: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()
@multimethod
def describe_date_1d(
config: Settings, series: Any, summary: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()
@multimethod
def describe_categorical_1d(
config: Settings, series: pd.Series, summary: dict
) -> Tuple[Settings, pd.Series, dict]:
raise NotImplementedError()
@multimethod
def describe_url_1d(
config: Settings, series: Any, summary: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()
@multimethod
def describe_file_1d(
config: Settings, series: Any, summary: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()
@multimethod
def describe_path_1d(
config: Settings, series: Any, summary: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()
@multimethod
def describe_image_1d(
config: Settings, series: Any, summary: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()
@multimethod
def describe_boolean_1d(
config: Settings, series: Any, summary: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()
@multimethod
def describe_timeseries_1d(
config: Settings, series: Any, summary: dict
) -> Tuple[Settings, Any, dict]:
raise NotImplementedError()