-
Notifications
You must be signed in to change notification settings - Fork 20
/
Copy pathSimpleSMT.hs
1059 lines (854 loc) · 29.4 KB
/
SimpleSMT.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{-# LANGUAGE Safe #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE PatternGuards #-}
-- | A module for interacting with an SMT solver, using SmtLib-2 format.
module SimpleSMT
(
-- * Basic Solver Interface
Solver(..)
, newSolver
, newSolverNotify
, ackCommand
, simpleCommand
, simpleCommandMaybe
, loadFile
, loadString
-- ** S-Expressions
, SExpr(..)
, showsSExpr, ppSExpr, readSExpr
-- ** Logging and Debugging
, Logger(..)
, newLogger
, withLogLevel
, logMessageAt
, logIndented
-- * Common SmtLib-2 Commands
, setLogic, setLogicMaybe
, setOption, setOptionMaybe
, produceUnsatCores
, named
, push, pushMany
, pop, popMany
, inNewScope
, declare
, declareFun
, declareDatatype
, define
, defineFun
, defineFunRec
, defineFunsRec
, assert
, check
, Result(..)
, getExprs, getExpr
, getConsts, getConst
, getUnsatCore
, Value(..)
, sexprToVal
-- * Convenience Functions for SmtLib-2 Expressions
, fam
, fun
, const
, app
-- * Convenience Functions for SmtLib-2 identifiers
, quoteSymbol
, symbol
, keyword
, as
-- ** Types
, tInt
, tBool
, tReal
, tArray
, tBits
-- ** Literals
, int
, real
, bool
, bvBin
, bvHex
, value
-- ** Connectives
, not
, and
, andMany
, or
, orMany
, xor
, implies
-- ** If-then-else
, ite
-- ** Relational Predicates
, eq
, distinct
, gt
, lt
, geq
, leq
, bvULt
, bvULeq
, bvSLt
, bvSLeq
-- ** Arithmetic
, add
, addMany
, sub
, neg
, mul
, abs
, div
, mod
, divisible
, realDiv
, toInt
, toReal
-- ** Bit Vectors
, concat
, extract
, bvNot
, bvNeg
, bvAnd
, bvXOr
, bvOr
, bvAdd
, bvSub
, bvMul
, bvUDiv
, bvURem
, bvSDiv
, bvSRem
, bvShl
, bvLShr
, bvAShr
, signExtend
, zeroExtend
-- ** Arrays
, select
, store
) where
import Prelude hiding (not, and, or, abs, div, mod, concat, const)
import qualified Prelude as P
import Data.Char(isSpace, isDigit)
import Data.List(unfoldr,intersperse)
import Data.Bits(testBit)
import Data.IORef(newIORef, atomicModifyIORef, modifyIORef', readIORef,
writeIORef)
import System.Process(runInteractiveProcess, waitForProcess, terminateProcess)
import System.IO (hFlush, hGetLine, hGetContents, hPutStrLn, stdout, hClose)
import System.Exit(ExitCode)
import qualified Control.Exception as X
import Control.Concurrent(forkIO)
import Control.Monad(forever,when,void)
import Text.Read(readMaybe)
import Data.Ratio((%), numerator, denominator)
import Numeric(showHex, readHex, showFFloat)
-- | Results of checking for satisfiability.
data Result = Sat -- ^ The assertions are satisfiable
| Unsat -- ^ The assertions are unsatisfiable
| Unknown -- ^ The result is inconclusive
deriving (Eq,Show)
-- | Common values returned by SMT solvers.
data Value = Bool !Bool -- ^ Boolean value
| Int !Integer -- ^ Integral value
| Real !Rational -- ^ Rational value
| Bits !Int !Integer -- ^ Bit vector: width, value
| Other !SExpr -- ^ Some other value
deriving (Eq,Show)
-- | S-expressions. These are the basic format for SmtLib-2.
data SExpr = Atom String
| List [SExpr]
deriving (Eq, Ord, Show)
-- | Show an s-expression.
--
-- >>> let Just (e, _) = readSExpr "(assert (= ((_ map (- (Int Int) Int)) a1Cl a1Cm) a1Cv))"
-- >>> putStrLn $ showsSExpr e ""
-- (assert (= ((_ map (- (Int Int) Int)) a1Cl a1Cm) a1Cv))
showsSExpr :: SExpr -> ShowS
showsSExpr ex =
case ex of
Atom x -> showString x
List [] -> showString "()"
List (e0 : es) -> showChar '(' . showsSExpr e0 .
foldr (\e m -> showChar ' ' . showsSExpr e . m)
(showChar ')') es
-- | Show an s-expression in a somewhat readable fashion.
--
-- >>> let Just (e, _) = readSExpr "(assert (= ((_ map (- (Int Int) Int)) a1Cl a1Cm) a1Cv))"
-- >>> putStrLn $ ppSExpr e ""
-- (assert
-- (=
-- (
-- (_
-- map
-- (-
-- (Int Int)
-- Int))
-- a1Cl
-- a1Cm)
-- a1Cv))
ppSExpr :: SExpr -> ShowS
ppSExpr = go 0
where
tab n = showString (replicate n ' ')
many = foldr (.) id
new n e = showChar '\n' . tab n . go n e
small n es =
case es of
[] -> Just []
e : more
| n <= 0 -> Nothing
| otherwise -> case e of
Atom x -> (showString x :) <$> small (n-1) more
_ -> Nothing
go :: Int -> SExpr -> ShowS
go n ex =
case ex of
Atom x -> showString x
List es
| Just fs <- small 5 es ->
showChar '(' . many (intersperse (showChar ' ') fs) . showChar ')'
List (Atom x : es) -> showString "(" . showString x .
many (map (new (n+3)) es) . showString ")"
List es -> showString "(" . many (map (new (n+2)) es) . showString ")"
-- | Parse an s-expression.
--
-- >>> readSExpr "(_ map (- (Int Int) Int)) a1Cl a1Cm)"
-- Just (List [Atom "_",Atom "map",List [Atom "-",List [Atom "Int",Atom "Int"],Atom "Int"]]," a1Cl a1Cm)")
readSExpr :: String -> Maybe (SExpr, String)
readSExpr (c : more) | isSpace c = readSExpr more
readSExpr (';' : more) = readSExpr $ drop 1 $ dropWhile (/= '\n') more
readSExpr ('|' : more) = do (sym, '|' : rest) <- pure (span ((/=) '|') more)
Just (Atom ('|' : sym ++ ['|']), rest)
readSExpr ('(' : more) = do (xs,more1) <- list more
return (List xs, more1)
where
list (c : txt) | isSpace c = list txt
list (')' : txt) = return ([], txt)
list txt = do (v,txt1) <- readSExpr txt
(vs,txt2) <- list txt1
return (v:vs, txt2)
readSExpr txt = case break end txt of
(as,bs) | P.not (null as) -> Just (Atom as, bs)
_ -> Nothing
where end x = x == ')' || isSpace x
--------------------------------------------------------------------------------
-- | An interactive solver process.
data Solver = Solver
{ command :: SExpr -> IO SExpr
-- ^ Send a command to the solver.
, stop :: IO ExitCode
-- ^ Wait for the solver to finish and exit gracefully.
, forceStop :: IO ExitCode
-- ^ Terminate the solver without waiting for it to finish.
}
-- | Start a new solver process.
newSolver :: String {- ^ Executable -} ->
[String] {- ^ Arguments -} ->
Maybe Logger {- ^ Optional logging here -} ->
IO Solver
newSolver n xs l = newSolverNotify n xs l Nothing
newSolverNotify ::
String {- ^ Executable -} ->
[String] {- ^ Arguments -} ->
Maybe Logger {- ^ Optional logging here -} ->
Maybe (ExitCode -> IO ()) {- ^ Do this when the solver exits -} ->
IO Solver
newSolverNotify exe opts mbLog mbOnExit =
do (hIn, hOut, hErr, h) <- runInteractiveProcess exe opts Nothing Nothing
let info a = case mbLog of
Nothing -> return ()
Just l -> logMessage l a
_ <- forkIO $ forever (do errs <- hGetLine hErr
info ("[stderr] " ++ errs))
`X.catch` \X.SomeException {} -> return ()
case mbOnExit of
Nothing -> pure ()
Just this -> void (forkIO (this =<< waitForProcess h))
getResponse <-
do txt <- hGetContents hOut -- Read *all* output
ref <- newIORef (unfoldr readSExpr txt) -- Parse, and store result
return $ atomicModifyIORef ref $ \xs ->
case xs of
[] -> (xs, Nothing)
y : ys -> (ys, Just y)
let cmd c = do let txt = showsSExpr c ""
info ("[send->] " ++ txt)
hPutStrLn hIn txt
hFlush hIn
command c =
do cmd c
mb <- getResponse
case mb of
Just res -> do info ("[<-recv] " ++ showsSExpr res "")
return res
Nothing -> fail "Missing response from solver"
waitAndCleanup =
do ec <- waitForProcess h
X.catch (do hClose hIn
hClose hOut
hClose hErr)
(\ex -> info (show (ex::X.IOException)))
return ec
forceStop = terminateProcess h *> waitAndCleanup
stop =
do cmd (List [Atom "exit"])
`X.catch` (\X.SomeException{} -> pure ())
waitAndCleanup
solver = Solver { .. }
setOption solver ":print-success" "true"
setOption solver ":produce-models" "true"
return solver
-- | Load the contents of a file.
loadFile :: Solver -> FilePath -> IO ()
loadFile s file = loadString s =<< readFile file
-- | Load a raw SMT string.
loadString :: Solver -> String -> IO ()
loadString s str = go (dropComments str)
where
go txt
| all isSpace txt = return ()
| otherwise =
case readSExpr txt of
Just (e,rest) -> command s e >> go rest
Nothing -> fail $ unlines [ "Failed to parse SMT file."
, txt
]
dropComments = unlines . map dropComment . lines
dropComment xs = case break (== ';') xs of
(as,_:_) -> as
_ -> xs
-- | A command with no interesting result.
ackCommand :: Solver -> SExpr -> IO ()
ackCommand proc c =
do res <- command proc c
case res of
Atom "success" -> return ()
_ -> fail $ unlines
[ "Unexpected result from the SMT solver:"
, " Expected: success"
, " Result: " ++ showsSExpr res ""
]
-- | A command entirely made out of atoms, with no interesting result.
simpleCommand :: Solver -> [String] -> IO ()
simpleCommand proc = ackCommand proc . List . map Atom
-- | Run a command and return True if successful, and False if unsupported.
-- This is useful for setting options that unsupported by some solvers, but used
-- by others.
simpleCommandMaybe :: Solver -> [String] -> IO Bool
simpleCommandMaybe proc c =
do res <- command proc (List (map Atom c))
case res of
Atom "success" -> return True
Atom "unsupported" -> return False
_ -> fail $ unlines
[ "Unexpected result from the SMT solver:"
, " Expected: success or unsupported"
, " Result: " ++ showsSExpr res ""
]
-- | Set a solver option.
setOption :: Solver -> String -> String -> IO ()
setOption s x y = simpleCommand s [ "set-option", x, y ]
-- | Set a solver option, returning False if the option is unsupported.
setOptionMaybe :: Solver -> String -> String -> IO Bool
setOptionMaybe s x y = simpleCommandMaybe s [ "set-option", x, y ]
-- | Set the solver's logic. Usually, this should be done first.
setLogic :: Solver -> String -> IO ()
setLogic s x = simpleCommand s [ "set-logic", x ]
-- | Set the solver's logic, returning False if the logic is unsupported.
setLogicMaybe :: Solver -> String -> IO Bool
setLogicMaybe s x = simpleCommandMaybe s [ "set-logic", x ]
-- | Request unsat cores. Returns if the solver supports them.
produceUnsatCores :: Solver -> IO Bool
produceUnsatCores s = setOptionMaybe s ":produce-unsat-cores" "true"
-- | Checkpoint state. A special case of 'pushMany'.
push :: Solver -> IO ()
push proc = pushMany proc 1
-- | Restore to last check-point. A special case of 'popMany'.
pop :: Solver -> IO ()
pop proc = popMany proc 1
-- | Push multiple scopes.
pushMany :: Solver -> Integer -> IO ()
pushMany proc n = simpleCommand proc [ "push", show n ]
-- | Pop multiple scopes.
popMany :: Solver -> Integer -> IO ()
popMany proc n = simpleCommand proc [ "pop", show n ]
-- | Execute the IO action in a new solver scope (push before, pop after)
inNewScope :: Solver -> IO a -> IO a
inNewScope s m =
do push s
m `X.finally` pop s
-- | Declare a constant. A common abbreviation for 'declareFun'.
-- For convenience, returns an the declared name as a constant expression.
declare :: Solver -> String -> SExpr -> IO SExpr
declare proc f t = declareFun proc f [] t
-- | Declare a function or a constant.
-- For convenience, returns an the declared name as a constant expression.
declareFun :: Solver -> String -> [SExpr] -> SExpr -> IO SExpr
declareFun proc f as r =
do ackCommand proc $ fun "declare-fun" [ Atom f, List as, r ]
return (const f)
-- | Declare an ADT using the format introduced in SmtLib 2.6.
declareDatatype ::
Solver ->
String {- ^ datatype name -} ->
[String] {- ^ sort parameters -} ->
[(String, [(String, SExpr)])] {- ^ constructors -} ->
IO ()
declareDatatype proc t [] cs =
ackCommand proc $
fun "declare-datatype" $
[ Atom t
, List [ List (Atom c : [ List [Atom s, argTy] | (s, argTy) <- args]) | (c, args) <- cs ]
]
declareDatatype proc t ps cs =
ackCommand proc $
fun "declare-datatype" $
[ Atom t
, fun "par" $
[ List (map Atom ps)
, List [ List (Atom c : [ List [Atom s, argTy] | (s, argTy) <- args]) | (c, args) <- cs ]
]
]
-- | Declare a constant. A common abbreviation for 'declareFun'.
-- For convenience, returns the defined name as a constant expression.
define :: Solver ->
String {- ^ New symbol -} ->
SExpr {- ^ Symbol type -} ->
SExpr {- ^ Symbol definition -} ->
IO SExpr
define proc f t e = defineFun proc f [] t e
-- | Define a function or a constant.
-- For convenience, returns an the defined name as a constant expression.
defineFun :: Solver ->
String {- ^ New symbol -} ->
[(String,SExpr)] {- ^ Parameters, with types -} ->
SExpr {- ^ Type of result -} ->
SExpr {- ^ Definition -} ->
IO SExpr
defineFun proc f as t e =
do ackCommand proc $ fun "define-fun"
$ [ Atom f, List [ List [const x,a] | (x,a) <- as ], t, e]
return (const f)
-- | Define a recursive function or a constant. For convenience,
-- returns an the defined name as a constant expression. This body
-- takes the function name as an argument.
defineFunRec :: Solver ->
String {- ^ New symbol -} ->
[(String,SExpr)] {- ^ Parameters, with types -} ->
SExpr {- ^ Type of result -} ->
(SExpr -> SExpr) {- ^ Definition -} ->
IO SExpr
defineFunRec proc f as t e =
do let fs = const f
ackCommand proc $ fun "define-fun-rec"
$ [ Atom f, List [ List [const x,a] | (x,a) <- as ], t, e fs]
return fs
-- | Define a recursive function or a constant. For convenience,
-- returns an the defined name as a constant expression. This body
-- takes the function name as an argument.
defineFunsRec :: Solver ->
[(String, [(String,SExpr)], SExpr, SExpr)] ->
IO ()
defineFunsRec proc ds = ackCommand proc $ fun "define-funs-rec" [ decls, bodies ]
where
oneArg (f, args, t, _) = List [ Atom f, List [ List [const x,a] | (x,a) <- args ], t]
decls = List (map oneArg ds)
bodies = List (map (\(_, _, _, body) -> body) ds)
-- | Assume a fact.
assert :: Solver -> SExpr -> IO ()
assert proc e = ackCommand proc $ fun "assert" [e]
-- | Check if the current set of assertion is consistent.
check :: Solver -> IO Result
check proc =
do res <- command proc (List [ Atom "check-sat" ])
case res of
Atom "unsat" -> return Unsat
Atom "unknown" -> return Unknown
Atom "sat" -> return Sat
_ -> fail $ unlines
[ "Unexpected result from the SMT solver:"
, " Expected: unsat, unknown, or sat"
, " Result: " ++ showsSExpr res ""
]
-- | Convert an s-expression to a value.
sexprToVal :: SExpr -> Value
sexprToVal expr =
case expr of
Atom "true" -> Bool True
Atom "false" -> Bool False
Atom ('#' : 'b' : ds)
| Just n <- binLit ds -> Bits (length ds) n
Atom ('#' : 'x' : ds)
| [(n,[])] <- readHex ds -> Bits (4 * length ds) n
Atom txt
| Just n <- readMaybe txt -> Int n
List [ Atom "-", x ]
| Int a <- sexprToVal x -> Int (negate a)
List [ Atom "/", x, y ]
| Int a <- sexprToVal x
, Int b <- sexprToVal y -> Real (a % b)
_ -> Other expr
where
binLit cs = do ds <- mapM binDigit cs
return $ sum $ zipWith (*) (reverse ds) powers2
powers2 = 1 : map (2 *) powers2
binDigit '0' = Just 0
binDigit '1' = Just 1
binDigit _ = Nothing
-- | Get the values of some s-expressions.
-- Only valid after a 'Sat' result.
getExprs :: Solver -> [SExpr] -> IO [(SExpr, Value)]
getExprs proc vals =
do res <- command proc $ List [ Atom "get-value", List vals ]
case res of
List xs -> mapM getAns xs
_ -> fail $ unlines
[ "Unexpected response from the SMT solver:"
, " Exptected: a list"
, " Result: " ++ showsSExpr res ""
]
where
getAns expr =
case expr of
List [ e, v ] -> return (e, sexprToVal v)
_ -> fail $ unlines
[ "Unexpected response from the SMT solver:"
, " Expected: (expr val)"
, " Result: " ++ showsSExpr expr ""
]
-- | Get the values of some constants in the current model.
-- A special case of 'getExprs'.
-- Only valid after a 'Sat' result.
getConsts :: Solver -> [String] -> IO [(String, Value)]
getConsts proc xs =
do ans <- getExprs proc (map Atom xs)
return [ (x,e) | (Atom x, e) <- ans ]
-- | Get the value of a single expression.
getExpr :: Solver -> SExpr -> IO Value
getExpr proc x =
do [ (_,v) ] <- getExprs proc [x]
return v
-- | Get the value of a single constant.
getConst :: Solver -> String -> IO Value
getConst proc x = getExpr proc (Atom x)
-- | Returns the names of the (named) formulas involved in a contradiction.
getUnsatCore :: Solver -> IO [String]
getUnsatCore s =
do res <- command s $ List [ Atom "get-unsat-core" ]
case res of
List xs -> mapM fromAtom xs
_ -> unexpected "a list of atoms" res
where
fromAtom x =
case x of
Atom a -> return a
_ -> unexpected "an atom" x
unexpected x e =
fail $ unlines [ "Unexpected response from the SMT Solver:"
, " Expected: " ++ x
, " Result: " ++ showsSExpr e ""
]
--------------------------------------------------------------------------------
-- | A constant, corresponding to a family indexed by some integers.
fam :: String -> [Integer] -> SExpr
fam f is = List (Atom "_" : Atom f : map (Atom . show) is)
-- | An SMT function.
fun :: String -> [SExpr] -> SExpr
fun f [] = Atom f
fun f as = List (Atom f : as)
-- | An SMT constant. A special case of 'fun'.
const :: String -> SExpr
const f = fun f []
app :: SExpr -> [SExpr] -> SExpr
app f xs = List (f : xs)
-- Identifiers -----------------------------------------------------------------------
-- | Symbols are either simple or quoted (c.f. SMTLIB v2.6 S3.1).
-- This predicate indicates whether a character is allowed in a simple
-- symbol. Note that only ASCII letters are allowed.
allowedSimpleChar :: Char -> Bool
allowedSimpleChar c =
isDigit c || c `elem` (['a' .. 'z'] ++ ['A' .. 'Z'] ++ "~!@$%^&*_-+=<>.?/")
isSimpleSymbol :: String -> Bool
isSimpleSymbol s@(c : _) = P.not (isDigit c) && all allowedSimpleChar s
isSimpleSymbol _ = False
quoteSymbol :: String -> String
quoteSymbol s
| isSimpleSymbol s = s
| otherwise = '|' : s ++ "|"
symbol :: String -> SExpr
symbol = Atom . quoteSymbol
keyword :: String -> SExpr
keyword s = Atom (':' : s)
-- | Generate a type annotation for a symbol
as :: SExpr -> SExpr -> SExpr
as s t = fun "as" [s, t]
-- Types -----------------------------------------------------------------------
-- | The type of integers.
tInt :: SExpr
tInt = const "Int"
-- | The type of booleans.
tBool :: SExpr
tBool = const "Bool"
-- | The type of reals.
tReal :: SExpr
tReal = const "Real"
-- | The type of arrays.
tArray :: SExpr {- ^ Type of indexes -} ->
SExpr {- ^ Type of elements -} ->
SExpr
tArray x y = fun "Array" [x,y]
-- | The type of bit vectors.
tBits :: Integer {- ^ Number of bits -} ->
SExpr
tBits w = fam "BitVec" [w]
-- Literals --------------------------------------------------------------------
-- | Boolean literals.
bool :: Bool -> SExpr
bool b = const (if b then "true" else "false")
-- | Integer literals.
int :: Integer -> SExpr
int x | x < 0 = neg (int (negate x))
| otherwise = Atom (show x)
-- | Real (well, rational) literals.
real :: Rational -> SExpr
real x
| toRational y == x = Atom (showFFloat Nothing y "")
| otherwise = realDiv (int (numerator x)) (int (denominator x))
where y = fromRational x :: Double
-- | A bit vector represented in binary.
--
-- * If the value does not fit in the bits, then the bits will be increased.
-- * The width should be strictly positive.
bvBin :: Int {- ^ Width, in bits -} -> Integer {- ^ Value -} -> SExpr
bvBin w v = const ("#b" ++ bits)
where
bits = reverse [ if testBit v n then '1' else '0' | n <- [ 0 .. w - 1 ] ]
-- | A bit vector represented in hex.
--
-- * If the value does not fit in the bits, the bits will be increased to
-- the next multiple of 4 that will fit the value.
-- * If the width is not a multiple of 4, it will be rounded
-- up so that it is.
-- * The width should be strictly positive.
bvHex :: Int {- ^ Width, in bits -} -> Integer {- ^ Value -} -> SExpr
bvHex w v
| v >= 0 = const ("#x" ++ padding ++ hex)
| otherwise = bvHex w (2^w + v)
where
hex = showHex v ""
padding = replicate (P.div (w + 3) 4 - length hex) '0'
-- | Render a value as an expression. Bit-vectors are rendered in hex,
-- if their width is a multiple of 4, and in binary otherwise.
value :: Value -> SExpr
value val =
case val of
Bool b -> bool b
Int n -> int n
Real r -> real r
Bits w v | P.mod w 4 == 0 -> bvHex w v
| otherwise -> bvBin w v
Other o -> o
-- Connectives -----------------------------------------------------------------
-- | Logical negation.
not :: SExpr -> SExpr
not p = fun "not" [p]
-- | Conjunction.
and :: SExpr -> SExpr -> SExpr
and p q = fun "and" [p,q]
andMany :: [SExpr] -> SExpr
andMany xs = if null xs then bool True else fun "and" xs
-- | Disjunction.
or :: SExpr -> SExpr -> SExpr
or p q = fun "or" [p,q]
orMany :: [SExpr] -> SExpr
orMany xs = if null xs then bool False else fun "or" xs
-- | Exclusive-or.
xor :: SExpr -> SExpr -> SExpr
xor p q = fun "xor" [p,q]
-- | Implication.
implies :: SExpr -> SExpr -> SExpr
implies p q = fun "=>" [p,q]
-- If-then-else ----------------------------------------------------------------
-- | If-then-else. This is polymorphic and can be used to construct any term.
ite :: SExpr -> SExpr -> SExpr -> SExpr
ite x y z = fun "ite" [x,y,z]
-- Relations -------------------------------------------------------------------
-- | Equality.
eq :: SExpr -> SExpr -> SExpr
eq x y = fun "=" [x,y]
distinct :: [SExpr] -> SExpr
distinct xs = if null xs then bool True else fun "distinct" xs
-- | Greater-then
gt :: SExpr -> SExpr -> SExpr
gt x y = fun ">" [x,y]
-- | Less-then.
lt :: SExpr -> SExpr -> SExpr
lt x y = fun "<" [x,y]
-- | Greater-than-or-equal-to.
geq :: SExpr -> SExpr -> SExpr
geq x y = fun ">=" [x,y]
-- | Less-than-or-equal-to.
leq :: SExpr -> SExpr -> SExpr
leq x y = fun "<=" [x,y]
-- | Unsigned less-than on bit-vectors.
bvULt :: SExpr -> SExpr -> SExpr
bvULt x y = fun "bvult" [x,y]
-- | Unsigned less-than-or-equal on bit-vectors.
bvULeq :: SExpr -> SExpr -> SExpr
bvULeq x y = fun "bvule" [x,y]
-- | Signed less-than on bit-vectors.
bvSLt :: SExpr -> SExpr -> SExpr
bvSLt x y = fun "bvslt" [x,y]
-- | Signed less-than-or-equal on bit-vectors.
bvSLeq :: SExpr -> SExpr -> SExpr
bvSLeq x y = fun "bvsle" [x,y]
-- | Addition.
-- See also 'bvAdd'
add :: SExpr -> SExpr -> SExpr
add x y = fun "+" [x,y]
addMany :: [SExpr] -> SExpr
addMany xs = if null xs then int 0 else fun "+" xs
-- | Subtraction.
sub :: SExpr -> SExpr -> SExpr
sub x y = fun "-" [x,y]
-- | Arithmetic negation for integers and reals.
-- See also 'bvNeg'.
neg :: SExpr -> SExpr
neg x = fun "-" [x]
-- | Multiplication.
mul :: SExpr -> SExpr -> SExpr
mul x y = fun "*" [x,y]
-- | Absolute value.
abs :: SExpr -> SExpr
abs x = fun "abs" [x]
-- | Integer division.
div :: SExpr -> SExpr -> SExpr
div x y = fun "div" [x,y]
-- | Modulus.
mod :: SExpr -> SExpr -> SExpr
mod x y = fun "mod" [x,y]
-- | Is the number divisible by the given constant.
divisible :: SExpr -> Integer -> SExpr
divisible x n = List [ fam "divisible" [n], x ]
-- | Division of real numbers.
realDiv :: SExpr -> SExpr -> SExpr
realDiv x y = fun "/" [x,y]
-- | Bit vector concatenation.
concat :: SExpr -> SExpr -> SExpr
concat x y = fun "concat" [x,y]
-- | Extend to the signed equivalent bitvector by @i@ bits
signExtend :: Integer -> SExpr -> SExpr
signExtend i x = List [ fam "sign_extend" [i], x ]
-- | Extend with zeros to the unsigned equivalent bitvector
-- by @i@ bits
zeroExtend :: Integer -> SExpr -> SExpr
zeroExtend i x = List [ fam "zero_extend" [i], x ]
-- | Satisfies @toInt x <= x@ (i.e., this is like Haskell's 'floor')
toInt :: SExpr -> SExpr
toInt e = fun "to_int" [e]
-- | Promote an integer to a real
toReal :: SExpr -> SExpr
toReal e = fun "to_real" [e]
-- | Extract a sub-sequence of a bit vector.
extract :: SExpr -> Integer -> Integer -> SExpr
extract x y z = List [ fam "extract" [y,z], x ]
-- | Bitwise negation.
bvNot :: SExpr -> SExpr
bvNot x = fun "bvnot" [x]
-- | Bitwise conjuction.
bvAnd :: SExpr -> SExpr -> SExpr
bvAnd x y = fun "bvand" [x,y]
-- | Bitwise disjunction.
bvOr :: SExpr -> SExpr -> SExpr
bvOr x y = fun "bvor" [x,y]
-- | Bitwise exclusive or.
bvXOr :: SExpr -> SExpr -> SExpr
bvXOr x y = fun "bvxor" [x,y]
-- | Bit vector arithmetic negation.
bvNeg :: SExpr -> SExpr
bvNeg x = fun "bvneg" [x]
-- | Addition of bit vectors.
bvAdd :: SExpr -> SExpr -> SExpr
bvAdd x y = fun "bvadd" [x,y]
-- | Subtraction of bit vectors.
bvSub :: SExpr -> SExpr -> SExpr
bvSub x y = fun "bvsub" [x,y]
-- | Multiplication of bit vectors.
bvMul :: SExpr -> SExpr -> SExpr
bvMul x y = fun "bvmul" [x,y]
-- | Bit vector unsigned division.
bvUDiv :: SExpr -> SExpr -> SExpr
bvUDiv x y = fun "bvudiv" [x,y]
-- | Bit vector unsigned reminder.
bvURem :: SExpr -> SExpr -> SExpr
bvURem x y = fun "bvurem" [x,y]
-- | Bit vector signed division.
bvSDiv :: SExpr -> SExpr -> SExpr
bvSDiv x y = fun "bvsdiv" [x,y]
-- | Bit vector signed reminder.
bvSRem :: SExpr -> SExpr -> SExpr
bvSRem x y = fun "bvsrem" [x,y]
-- | Shift left.
bvShl :: SExpr {- ^ value -} -> SExpr {- ^ shift amount -} -> SExpr
bvShl x y = fun "bvshl" [x,y]
-- | Logical shift right.
bvLShr :: SExpr {- ^ value -} -> SExpr {- ^ shift amount -} -> SExpr
bvLShr x y = fun "bvlshr" [x,y]
-- | Arithemti shift right (copies most significant bit).
bvAShr :: SExpr {- ^ value -} -> SExpr {- ^ shift amount -} -> SExpr
bvAShr x y = fun "bvashr" [x,y]
-- | Get an elemeent of an array.
select :: SExpr {- ^ array -} -> SExpr {- ^ index -} -> SExpr
select x y = fun "select" [x,y]
-- | Update an array
store :: SExpr {- ^ array -} ->
SExpr {- ^ index -} ->
SExpr {- ^ new value -} ->
SExpr
store x y z = fun "store" [x,y,z]
--------------------------------------------------------------------------------
-- Attributes