You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Function for making predictions with the Bayesian neural network.
@param X_test The matrix of features for the test data
@return m The predictive mean for the test target variables.
@return v The predictive variance for the test target
variables.
@return v_noise The estimated variance for the additive noise.
"""
According to your publication, the predictive variance should be the sample variance of T stochastic forward passes plus the inverse model precision tau. (In your case, because the output y is a scalar, the variance are also scalars.) But it looks like that you did not add the inverse of tau when you are calculating the predictive "rmse". In addition, what is the estimate variance with additive noise?
Thank you very much.
Best,
Lei
The text was updated successfully, but these errors were encountered:
Hello Yarin,
It looks like that the description of the outputs in your
predict
method of thenet
class does not match to the actual output.DropoutUncertaintyExps/net/net.py
Lines 95 to 108 in 6eb4497
According to your publication, the predictive variance should be the sample variance of T stochastic forward passes plus the inverse model precision tau. (In your case, because the output y is a scalar, the variance are also scalars.) But it looks like that you did not add the inverse of tau when you are calculating the predictive "rmse". In addition, what is the estimate variance with additive noise?
Thank you very much.
Best,
Lei
The text was updated successfully, but these errors were encountered: