-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy patheval_tools.py
474 lines (431 loc) · 19.2 KB
/
eval_tools.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
import time
import random
import numpy as np
from keras.utils.np_utils import to_categorical
from math import radians, cos, sin, asin, sqrt
import config
import operator
import threading
import os
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = config.GPU
GRID_COUNT = config.GRID_COUNT
BATCH_SIZE = config.batch_size
MODEL_NAME = config.model_file_name
TEXT_K = config.text_k
WORD_VEC_PATH = config.WORD_VEC_PATH
TRAINING_EPOCH = config.training_epoch
TRAIN_TEST_PART = config.train_test_part
random.seed(2017)
def time_hour(ci_time, form = '%Y-%m-%d %X'):
st = time.strptime(ci_time, form)
weekday = st.tm_wday
hour = st.tm_hour
if weekday < 6:
return hour
else:
return (24+hour)
def time_diff(time1,time2,form = '%Y-%m-%d %X'):
time11 = time.strptime(time1, form)
time22 = time.strptime(time2, form)
return abs(int(time.mktime(time11))-int(time.mktime(time22)))
def time_diff_la(time1,time2,form = '%Y-%m-%d %X'):
s = time1
if 'CDT' in s:
t1 = time.strptime(s.replace(' CDT',''))
if 'CST' in s:
t1 = time.strptime(s.replace(' CST',''))
s = time2
if 'CDT' in s:
t2 = time.strptime(s.replace(' CDT',''))
if 'CST' in s:
t2 = time.strptime(s.replace(' CST',''))
return abs(int(time.mktime(t1))-int(time.mktime(t2)))
def time_hour_la(ci_time, form = '%Y-%m-%d %X'):
s = ci_time
if 'CDT' in s:
st = time.strptime(s.replace(' CDT',''))
if 'CST' in s:
st = time.strptime(s.replace(' CST',''))
weekday = st.tm_wday
hour = st.tm_hour
if weekday < 6:
return hour
else:
return (24+hour)
def haversine(lon1, lat1, lon2, lat2):
"""
Calculate the great circle distance between two points
on the earth (specified in decimal degrees)
"""
lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])
# haversine
dlon = lon2 - lon1
dlat = lat2 - lat1
a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2
c = 2 * asin(sqrt(a))
r = 6371
return c * r * 1000
def geo_grade(index, x, y, m_nGridCount=GRID_COUNT):
dXMax, dXMin, dYMax, dYMin = max(x), min(x), max(y), min(y)
print dXMax, dXMin, dYMax, dYMin
m_dOriginX = dXMin
m_dOriginY = dYMin
dSizeX = (dXMax - dXMin) / m_nGridCount
dSizeY = (dYMax - dYMin) / m_nGridCount
m_vIndexCells = []
center_location_list = []
for i in range(0, m_nGridCount * m_nGridCount + 1):
m_vIndexCells.append([])
y_ind = int(i / m_nGridCount)
x_ind = i - y_ind * m_nGridCount
center_location_list.append((dXMin + x_ind * dSizeX + 0.5 * dSizeX, dYMin + y_ind * dSizeY + 0.5 * dSizeY))
print (m_nGridCount, m_dOriginX, m_dOriginY, \
dSizeX, dSizeY, len(m_vIndexCells), len(index))
poi_index_dict = {}
for i in range(len(x)):
nXCol = int((x[i] - m_dOriginX) / dSizeX)
nYCol = int((y[i] - m_dOriginY) / dSizeY)
if nXCol >= m_nGridCount:
print 'max X'
nXCol = m_nGridCount - 1
if nYCol >= m_nGridCount:
print 'max Y'
nYCol = m_nGridCount - 1
iIndex = nYCol * m_nGridCount + nXCol
poi_index_dict[index[i]] = iIndex
m_vIndexCells[iIndex].append([index[i], x[i], y[i]])
return poi_index_dict, center_location_list
def evaluation_last_with_distance(all_output_array, all_test_Y, center_location_list):
count, all_recall1, all_recall2, all_recall3, all_recall4, all_recall5, alldistance = 0.,0.,0.,0.,0.,0.,0.
for j in range(len(all_test_Y)):
y_test = all_test_Y[j]
output_array = all_output_array[j]
for i in range(len(y_test)):
flag = False
if ((i+1)<len(y_test)):
if (y_test[i] != 0) & (y_test[i+1]==0):
flag = True
else:
if y_test[i] != 0:
flag =True
if flag:
true_pl = y_test[i] - 1
infe_pl = output_array[i]
topd = infe_pl[1:].argsort()[-5:][::-1]
dd = []
for k in topd:
pred = center_location_list[k]
tr = center_location_list[true_pl]
d = haversine(pred[0], pred[1], tr[0], tr[1])
dd.append(d)
d = min(dd)
alldistance += d
if true_pl in infe_pl[1:].argsort()[-1:][::-1]: all_recall1 += 1
if true_pl in infe_pl[1:].argsort()[-5:][::-1]: all_recall2 += 1
if true_pl in infe_pl[1:].argsort()[-10:][::-1]: all_recall3 += 1
if true_pl in infe_pl[1:].argsort()[-15:][::-1]: all_recall4 += 1
if true_pl in infe_pl[1:].argsort()[-20:][::-1]: all_recall5 += 1
count += 1
print count
print [all_recall1,all_recall2,all_recall3, all_recall4, all_recall5]
print [all_recall1 / count, all_recall2 / count,
all_recall3 / count, all_recall4 / count, all_recall5 / count, alldistance / count]
return [all_recall1 / count, all_recall2 / count,
all_recall3 / count, all_recall4 / count, all_recall5 / count, alldistance / count]
def nearest_location_last(vali_X, vali_evl, center_location_list):
all_test_X_pl = vali_X[0]
count, hc1 , hc5 , hc10, hc15, hc20, alldistance = 0.,0.,0.,0.,0.,0.,0.
all_test_X_pl = all_test_X_pl.tolist()
for j in range(len(all_test_X_pl)):
trajl = all_test_X_pl[j]
predict_traj = []
for r in trajl:
if r == 0:
predict_traj.append(0)
else:
r = r-1
res_list = [[i, haversine(center_location_list[r][0], center_location_list[r][1],
center_location_list[i][0], center_location_list[i][1])]
for i in range(len(center_location_list))]
res_list.sort(key=operator.itemgetter(1))
predict_traj.append([item[0] for item in res_list])
ground_truth = vali_evl[j]
for g in range(len(ground_truth)):
flag = False
if ((g+1)<len(ground_truth)):
if (ground_truth[g] != 0) & (ground_truth[g+1]==0):
flag = True
else:
if ground_truth[g] != 0:
flag =True
if flag:
ground_g = ground_truth[g] -1
if ground_g in predict_traj[g][0:1]: hc1 +=1
if ground_g in predict_traj[g][0:5]: hc5 +=1
if ground_g in predict_traj[g][0:10]: hc10 +=1
if ground_g in predict_traj[g][0:15]: hc15 += 1
if ground_g in predict_traj[g][0:20]: hc20 += 1
dd = []
for k in predict_traj[g][0:5]:
pred = center_location_list[k]
tr = center_location_list[ground_g]
d = haversine(pred[0], pred[1], tr[0], tr[1])
dd.append(d)
d = min(dd)
# print d
alldistance += d
count+=1
if count % 100 == 0: print ("nearest location last",count)
print ("nearest location last",count)
print (hc1 , hc5 , hc10, hc15, hc20)
print [hc1 / count, hc5 / count,
hc10 / count, hc15 / count, hc20 / count, alldistance / count]
def frequent_location_last(train_X, vali_X, vali_evl, center_location_list):
all_train_X_pl, all_train_X_user= train_X[0],train_X[2]
all_test_X_pl, all_test_X_user = vali_X[0],vali_X[2]
count, hc1 , hc5 , hc10, hc15, hc20, alldistance = 0.,0.,0.,0.,0.,0.,0.
all_train_X_pl = all_train_X_pl.tolist()
user_frequent_pl = {}
for j in range(len(all_train_X_pl)):
if not user_frequent_pl.has_key(all_train_X_user[j][0]):
user_frequent_pl[all_train_X_user[j][0]] = np.zeros(len(center_location_list))
for p in range(len(all_train_X_pl[j])):
if all_train_X_pl[j][p] != 0:
user_frequent_pl[all_train_X_user[j][0]][all_train_X_pl[j][p]-1] += 1
all_test_X_pl = all_test_X_pl.tolist()
for j in range(len(all_test_X_pl)):
ground_truth = vali_evl[j]
user = all_test_X_user[j][0]
for g in range(len(ground_truth)):
flag = False
if ((g+1)<len(ground_truth)):
if (ground_truth[g] != 0) & (ground_truth[g+1]==0):
flag = True
else:
if ground_truth[g] != 0:
flag =True
if flag:
ground_g = ground_truth[g] -1
if ground_g in user_frequent_pl[user].argsort()[-1:][::-1]: hc1 +=1
if ground_g in user_frequent_pl[user].argsort()[-5:][::-1]: hc5 +=1
if ground_g in user_frequent_pl[user].argsort()[-10:][::-1]: hc10 +=1
if ground_g in user_frequent_pl[user].argsort()[-15:][::-1]: hc15 += 1
if ground_g in user_frequent_pl[user].argsort()[-20:][::-1]: hc20 += 1
dd = []
for k in user_frequent_pl[user].argsort()[-5:][::-1]:
pred = center_location_list[k]
tr = center_location_list[ground_g]
d = haversine(pred[0], pred[1], tr[0], tr[1])
dd.append(d)
d = min(dd)
alldistance += d
count+=1
if count % 100 == 0: print ("frequent location",count)
print ("frequent location",count)
print (hc1 , hc5 , hc10, hc15, hc20)
print [hc1 / count, hc5 / count,
hc10 / count, hc15 / count, hc20 / count, alldistance / count]
return [hc1 / count, hc5 / count,
hc10 / count, hc15 / count, hc20 / count, alldistance / count]
def load_wordvec(vecpath = WORD_VEC_PATH):
word_vec = {}
with open(vecpath,'r') as f:
for l in f:
vec = []
attrs = l.replace('\n','').split(' ')
for i in range(1,len(attrs)):
vec.append(float(attrs[i]))
word_vec[attrs[0]] = vec
return word_vec
def text_feature_generation(user_feature_sequence, dataset='FS'):
text_vec = load_wordvec()
useful_vec = {}
print ("useful data length",len(user_feature_sequence))
count = 0
for u in user_feature_sequence.keys():
features = user_feature_sequence[u]
for traj_fea in range(len(features)):
useful_word_sample = []
for i in range(len(features[traj_fea][2])):
text = features[traj_fea][2][i]
words_key = []
if not text == 0:
words = []
if dataset=='FS':
words = text.split(' ')
elif dataset=='LA':
words = text.split('\t')
for w in words:
if (text_vec.has_key(w)) & (not useful_vec.has_key(w)):
useful_vec[w] = text_vec[w]
if useful_vec.has_key(w):
words_key.append(w)
else: print "Text == 0"
useful_word_sample.append(words_key)
user_feature_sequence[u][traj_fea].append(useful_word_sample)
return user_feature_sequence,useful_vec
def text_features_to_categorical(text_features_train, word_index):
textf_res = []
for item in text_features_train:
if item==0:
textf_res.append(np.zeros(len(word_index.keys())))
elif len(item) == 0:
textf_res.append(np.zeros(len(word_index.keys())))
else:
l = len(item)
vec = np.zeros(len(word_index.keys()))
for w in item:
wv = to_categorical([word_index[w]], len(word_index.keys()))
vec = vec + wv
vec = vec / l
textf_res.append(vec[0])
return textf_res
def text_features_to_categorical_batch(text_features_train_batch, word_index):
textf_res_batch = []
for text_features_train in text_features_train_batch:
textf_res = text_features_to_categorical(text_features_train, word_index)
textf_res_batch.append(textf_res)
return textf_res_batch
def geo_dataset_train_test_text(user_feature_sequence, useful_vec, max_record, place_dim = GRID_COUNT*GRID_COUNT,
train_test_part=TRAIN_TEST_PART):
user_index = {}
for u in range(len(user_feature_sequence.keys())):
user_index[user_feature_sequence.keys()[u]] = u
user_dim = len(user_feature_sequence.keys())
word_index = {}
word_vec = []
for w in range(len(useful_vec.keys())):
word_index[useful_vec.keys()[w]] = w
word_vec.append(useful_vec[useful_vec.keys()[w]])
word_vec = np.array(word_vec)
print word_vec.shape
all_train_X_pl, all_train_X_time , all_train_X_user, all_train_X_text , all_train_Y, all_train_evl \
= [],[],[],[],[],[]
all_test_X_pl, all_test_X_time, all_test_X_user, all_test_X_text, all_test_Y, all_test_evl \
= [],[],[],[],[],[]
for user in user_feature_sequence.keys():
sequ_features = user_feature_sequence[user]
train_size = int(len(sequ_features)*train_test_part) + 1
for sample in range(0,train_size):
pl_features, time_features, text_features_train \
= sequ_features[sample][0],sequ_features[sample][1],sequ_features[sample][3]
pl_train = pl_features[0:len(pl_features)-1]
time_train = time_features[0:len(time_features)-1]
user_index_train = [(user_index[user] + 1) for item in range(len(pl_features)-1)]
text_features_train = text_features_train[0:len(text_features_train)-1]
while len(pl_train) < (max_record-1):
pl_train.append(0)
time_train.append(0)
user_index_train.append(0)
text_features_train.append(0)
train_y = pl_features[1:]
while len(train_y) < (max_record-1):
train_y.append(0)
all_train_X_pl.append(np.array(pl_train))
all_train_X_time.append(np.array(time_train))
all_train_X_user.append(np.array(user_index_train))
all_train_X_text.append(text_features_train)
all_train_Y.append(train_y)
all_train_evl.append(train_y)
for sample in range(train_size,len(sequ_features)):
pl_features, time_features, text_features_test\
= sequ_features[sample][0],sequ_features[sample][1],sequ_features[sample][3]
pl_test = pl_features[0:len(pl_features)-1]
time_test = time_features[0:len(time_features)-1]
user_index_test = [(user_index[user] + 1) for item in range(len(pl_features)-1)]
text_features_test = text_features_test[0:len(text_features_test) - 1]
while len(pl_test) < (max_record-1):
pl_test.append(0)
time_test.append(0)
user_index_test.append(0)
text_features_test.append(0)
test_y = pl_features[1:]
while len(test_y) < (max_record-1):
test_y.append(0)
all_test_X_pl.append(np.array(pl_test))
all_test_X_time.append(np.array(time_test))
all_test_X_user.append(np.array(user_index_test))
all_test_X_text.append(text_features_to_categorical(text_features_test,word_index))
all_test_Y.append(to_categorical(test_y, num_classes=place_dim + 1))
all_test_evl.append(test_y)
print all_train_X_pl[0]
print all_train_evl[0]
all_train_X_pl = np.array(all_train_X_pl)
all_train_X_time = np.array(all_train_X_time)
all_train_X_user = np.array(all_train_X_user)
# all_train_X_text = np.array(all_train_X_text)
all_train_evl = np.array(all_train_evl)
all_train_Y = np.array(all_train_Y)
all_test_X_pl = np.array(all_test_X_pl)
all_test_X_time= np.array(all_test_X_time)
all_test_X_user = np.array(all_test_X_user)
all_test_X_text = np.array(all_test_X_text)
print ("all_train_X_pl,all_train_X_time,all_train_X_user",
all_train_X_pl.shape,all_train_X_time.shape,all_train_X_user.shape)
return [all_train_X_pl,all_train_X_time,all_train_X_user,all_train_X_text],np.array(all_train_Y), all_train_evl,\
[all_test_X_pl, all_test_X_time,all_test_X_user,all_test_X_text], np.array(all_test_Y), all_test_evl, \
user_dim, word_vec, word_index
def geo_rnn_train_batch_text(train_X, train_Y, vali_X, vali_Y,vali_evl, model,center_location_list,
word_index, dataset='FS',epoch=TRAINING_EPOCH):
place_dim = GRID_COUNT * GRID_COUNT
for i in range(epoch):
print ("epoch: ", i)
model.fit_generator(batch_generator_text(train_X,train_Y,word_index),steps_per_epoch=int(len(train_X[0])/BATCH_SIZE)+1,
epochs=1, max_queue_size=7, validation_data=(vali_X,vali_Y),workers=5)
all_output_array = model.predict(vali_X)
evaluation_last_with_distance(all_output_array, vali_evl, center_location_list)
print './model/' + dataset + '_' + MODEL_NAME + '_' + str(i) + '.h5'
model.save('./model/' + dataset + '_' + MODEL_NAME + '_' + str(i) + '.h5')
class threadsafe_iter:
"""Takes an iterator/generator and makes it thread-safe by
serializing call to the `next` method of given iterator/generator.
"""
def __init__(self, it):
self.it = it
self.lock = threading.Lock()
def __iter__(self):
return self
def next(self):
with self.lock:
return self.it.next()
def threadsafe_generator(f):
"""A decorator that takes a generator function and makes it thread-safe.
"""
def g(*a, **kw):
return threadsafe_iter(f(*a, **kw))
return g
@threadsafe_generator
def batch_generator_text(train_X, train_Y,word_index):
place_dim = GRID_COUNT * GRID_COUNT
while 1:
j = 0
while j < train_X[0].shape[0]:
y_b = []
pl_b, time_b, user_b = train_X[0][j:j+BATCH_SIZE], train_X[1][j:j+BATCH_SIZE], train_X[2][j:j+BATCH_SIZE]
text_b = np.array(text_features_to_categorical_batch(train_X[3][j:j+BATCH_SIZE], word_index))
for sample in train_Y[j:j + BATCH_SIZE]:
y_b.append(to_categorical(sample, num_classes=place_dim + 1))
yield ([pl_b, time_b, user_b, text_b], np.array(y_b))
if (j + BATCH_SIZE) > train_X[0].shape[0]:
y_b= []
pl_b, time_b, user_b = train_X[0][j:], train_X[1][j:], train_X[2][j:]
text_b =np.array(text_features_to_categorical_batch( train_X[3][j:], word_index))
for sample in train_Y[j:]:
y_b.append(to_categorical(sample, num_classes=place_dim + 1))
print (pl_b.shape, time_b.shape, text_b.shape, user_b.shape)
yield ([pl_b, time_b, user_b, text_b], np.array(y_b))
j = j + BATCH_SIZE
def check_records_locations(records, th = 0.001):
lats,lons =[],[]
for r in records:
lats.append(float(r[2]))
lons.append(float(r[3]))
if ((max(lats)-min(lats))< th) and ((max(lons)-min(lons))< th):
return False
else:
return True
if __name__ == '__main__':
a= np.array([1,23,4])
b= np.array([3,54,5])
print (a+b)/2