We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
作者您好,我在复现时出现验证集和测试集loss为nan情况,请问可能是什么原因造成的? 非常感谢! Epoch: 0001 train_loss= 2.07928 train_acc= 0.23030 val_loss= nan val_acc= 0.32117 time= 2.65600 Epoch: 0002 train_loss= 2.01573 train_acc= 0.77091 val_loss= nan val_acc= 0.32117 time= 2.52879 Epoch: 0003 train_loss= 1.91171 train_acc= 0.75977 val_loss= nan val_acc= 0.32117 time= 2.45211 Epoch: 0004 train_loss= 1.78018 train_acc= 0.76200 val_loss= nan val_acc= 0.32117 time= 2.43472 Epoch: 0005 train_loss= 1.63068 train_acc= 0.74985 val_loss= nan val_acc= 0.32117 time= 2.50082 Epoch: 0006 train_loss= 1.48861 train_acc= 0.74742 val_loss= nan val_acc= 0.32117 time= 2.56341 Epoch: 0007 train_loss= 1.38061 train_acc= 0.73000 val_loss= nan val_acc= 0.32117 time= 2.46355 Epoch: 0008 train_loss= 1.29031 train_acc= 0.67389 val_loss= nan val_acc= 0.32117 time= 2.63429 Epoch: 0009 train_loss= 1.22601 train_acc= 0.59186 val_loss= nan val_acc= 0.32117 time= 2.51430 Epoch: 0010 train_loss= 1.16189 train_acc= 0.56391 val_loss= nan val_acc= 0.32117 time= 2.33937 Epoch: 0011 train_loss= 1.09515 train_acc= 0.57545 val_loss= nan val_acc= 0.32117 time= 2.54391 Epoch: 0012 train_loss= 1.03070 train_acc= 0.60867 val_loss= nan val_acc= 0.32117 time= 2.50400 Epoch: 0013 train_loss= 0.95400 train_acc= 0.68159 val_loss= nan val_acc= 0.32117 time= 2.34988 Epoch: 0014 train_loss= 0.88769 train_acc= 0.75491 val_loss= nan val_acc= 0.32117 time= 2.64189 Epoch: 0015 train_loss= 0.82062 train_acc= 0.78043 val_loss= nan val_acc= 0.32117 time= 2.40145 Epoch: 0016 train_loss= 0.77129 train_acc= 0.78104 val_loss= nan val_acc= 0.32117 time= 2.48341 Epoch: 0017 train_loss= 0.72617 train_acc= 0.78266 val_loss= nan val_acc= 0.32117 time= 2.45733 Epoch: 0018 train_loss= 0.68917 train_acc= 0.79036 val_loss= nan val_acc= 0.32117 time= 2.84410 Epoch: 0019 train_loss= 0.66309 train_acc= 0.80778 val_loss= nan val_acc= 0.32117 time= 2.53790 Epoch: 0020 train_loss= 0.63271 train_acc= 0.83857 val_loss= nan val_acc= 0.32117 time= 2.36713 Epoch: 0021 train_loss= 0.60310 train_acc= 0.85335 val_loss= nan val_acc= 0.32117 time= 2.40726 Epoch: 0022 train_loss= 0.57907 train_acc= 0.86328 val_loss= nan val_acc= 0.32117 time= 2.35343 Epoch: 0023 train_loss= 0.55026 train_acc= 0.86773 val_loss= nan val_acc= 0.32117 time= 2.36145 Epoch: 0024 train_loss= 0.52539 train_acc= 0.87503 val_loss= nan val_acc= 0.32117 time= 2.54975 Epoch: 0025 train_loss= 0.50089 train_acc= 0.87989 val_loss= nan val_acc= 0.32117 time= 2.34190 Epoch: 0026 train_loss= 0.47744 train_acc= 0.88211 val_loss= nan val_acc= 0.32117 time= 2.42881 Epoch: 0027 train_loss= 0.45458 train_acc= 0.89285 val_loss= nan val_acc= 0.32117 time= 2.45021 Epoch: 0028 train_loss= 0.43473 train_acc= 0.89143 val_loss= nan val_acc= 0.32117 time= 2.50036 Epoch: 0029 train_loss= 0.40996 train_acc= 0.90257 val_loss= nan val_acc= 0.32117 time= 3.01274 Epoch: 0030 train_loss= 0.39648 train_acc= 0.90196 val_loss= nan val_acc= 0.32117 time= 5.04990 Epoch: 0031 train_loss= 0.37891 train_acc= 0.90379 val_loss= nan val_acc= 0.32117 time= 5.03217 Epoch: 0032 train_loss= 0.36177 train_acc= 0.91169 val_loss= nan val_acc= 0.32117 time= 2.40506 Epoch: 0033 train_loss= 0.34688 train_acc= 0.91533 val_loss= nan val_acc= 0.32117 time= 2.30696 Epoch: 0034 train_loss= 0.32800 train_acc= 0.92121 val_loss= nan val_acc= 0.32117 time= 2.43240 Epoch: 0035 train_loss= 0.31175 train_acc= 0.92506 val_loss= nan val_acc= 0.32117 time= 2.31022 Epoch: 0036 train_loss= 0.29964 train_acc= 0.92870 val_loss= nan val_acc= 0.32117 time= 2.39205 Epoch: 0037 train_loss= 0.28558 train_acc= 0.93296 val_loss= nan val_acc= 0.32117 time= 2.40226 Epoch: 0038 train_loss= 0.27217 train_acc= 0.93741 val_loss= nan val_acc= 0.32117 time= 2.46458 Epoch: 0039 train_loss= 0.25874 train_acc= 0.93944 val_loss= nan val_acc= 0.32117 time= 2.50741 Epoch: 0040 train_loss= 0.24668 train_acc= 0.94166 val_loss= nan val_acc= 0.32117 time= 2.40061 Epoch: 0041 train_loss= 0.23751 train_acc= 0.94470 val_loss= nan val_acc= 0.32117 time= 2.44478 Epoch: 0042 train_loss= 0.22154 train_acc= 0.95017 val_loss= nan val_acc= 0.32117 time= 2.37206 Epoch: 0043 train_loss= 0.21236 train_acc= 0.95402 val_loss= nan val_acc= 0.32117 time= 2.44820 Epoch: 0044 train_loss= 0.19870 train_acc= 0.95503 val_loss= nan val_acc= 0.32117 time= 2.39960 Epoch: 0045 train_loss= 0.19212 train_acc= 0.95686 val_loss= nan val_acc= 0.32117 time= 2.75499 Epoch: 0046 train_loss= 0.18108 train_acc= 0.96010 val_loss= nan val_acc= 0.32117 time= 2.42976 Epoch: 0047 train_loss= 0.17043 train_acc= 0.96273 val_loss= nan val_acc= 0.32117 time= 2.52861 Epoch: 0048 train_loss= 0.16526 train_acc= 0.96172 val_loss= nan val_acc= 0.32117 time= 2.52610 Epoch: 0049 train_loss= 0.15962 train_acc= 0.96415 val_loss= nan val_acc= 0.32117 time= 2.42181 Epoch: 0050 train_loss= 0.15042 train_acc= 0.96597 val_loss= nan val_acc= 0.32117 time= 2.64140 Epoch: 0051 train_loss= 0.14265 train_acc= 0.96617 val_loss= nan val_acc= 0.32117 time= 2.57291 Epoch: 0052 train_loss= 0.13148 train_acc= 0.97043 val_loss= nan val_acc= 0.32117 time= 2.40228 Epoch: 0053 train_loss= 0.12872 train_acc= 0.97124 val_loss= nan val_acc= 0.32117 time= 2.51607 Epoch: 0054 train_loss= 0.12205 train_acc= 0.97225 val_loss= nan val_acc= 0.32117 time= 2.55258 Epoch: 0055 train_loss= 0.11693 train_acc= 0.97428 val_loss= nan val_acc= 0.32117 time= 2.64202 Epoch: 0056 train_loss= 0.11393 train_acc= 0.97286 val_loss= nan val_acc= 0.32117 time= 2.55240 Epoch: 0057 train_loss= 0.10748 train_acc= 0.97509 val_loss= nan val_acc= 0.32117 time= 2.36710 Epoch: 0058 train_loss= 0.10186 train_acc= 0.97590 val_loss= nan val_acc= 0.32117 time= 2.47185 Epoch: 0059 train_loss= 0.09597 train_acc= 0.97812 val_loss= nan val_acc= 0.32117 time= 2.31466 Epoch: 0060 train_loss= 0.09626 train_acc= 0.97873 val_loss= nan val_acc= 0.32117 time= 2.30629 Epoch: 0061 train_loss= 0.08930 train_acc= 0.97893 val_loss= nan val_acc= 0.32117 time= 2.26337 Epoch: 0062 train_loss= 0.08495 train_acc= 0.98197 val_loss= nan val_acc= 0.32117 time= 2.36974 Epoch: 0063 train_loss= 0.08541 train_acc= 0.97995 val_loss= nan val_acc= 0.32117 time= 2.42046 Epoch: 0064 train_loss= 0.08166 train_acc= 0.98157 val_loss= nan val_acc= 0.32117 time= 2.44093 Epoch: 0065 train_loss= 0.07523 train_acc= 0.98298 val_loss= nan val_acc= 0.32117 time= 2.23188 Epoch: 0066 train_loss= 0.07568 train_acc= 0.98298 val_loss= nan val_acc= 0.32117 time= 2.36673 Epoch: 0067 train_loss= 0.07194 train_acc= 0.98157 val_loss= nan val_acc= 0.32117 time= 2.46660 Epoch: 0068 train_loss= 0.07120 train_acc= 0.98298 val_loss= nan val_acc= 0.32117 time= 2.50214 Epoch: 0069 train_loss= 0.06753 train_acc= 0.98481 val_loss= nan val_acc= 0.32117 time= 2.38757 Epoch: 0070 train_loss= 0.06485 train_acc= 0.98400 val_loss= nan val_acc= 0.32117 time= 2.42465 Epoch: 0071 train_loss= 0.06490 train_acc= 0.98440 val_loss= nan val_acc= 0.32117 time= 2.35781 Epoch: 0072 train_loss= 0.06169 train_acc= 0.98623 val_loss= nan val_acc= 0.32117 time= 2.34908 Epoch: 0073 train_loss= 0.05782 train_acc= 0.98805 val_loss= nan val_acc= 0.32117 time= 2.38237 Epoch: 0074 train_loss= 0.05849 train_acc= 0.98764 val_loss= nan val_acc= 0.32117 time= 2.55141 Epoch: 0075 train_loss= 0.05523 train_acc= 0.98805 val_loss= nan val_acc= 0.32117 time= 2.40528 Epoch: 0076 train_loss= 0.05511 train_acc= 0.98744 val_loss= nan val_acc= 0.32117 time= 2.42923 Epoch: 0077 train_loss= 0.05031 train_acc= 0.98947 val_loss= nan val_acc= 0.32117 time= 2.38595 Epoch: 0078 train_loss= 0.04973 train_acc= 0.98967 val_loss= nan val_acc= 0.32117 time= 2.31613 Epoch: 0079 train_loss= 0.04927 train_acc= 0.98785 val_loss= nan val_acc= 0.32117 time= 2.46006 Epoch: 0080 train_loss= 0.04808 train_acc= 0.98967 val_loss= nan val_acc= 0.32117 time= 2.59593 Epoch: 0081 train_loss= 0.04598 train_acc= 0.99109 val_loss= nan val_acc= 0.32117 time= 2.44770 Epoch: 0082 train_loss= 0.04472 train_acc= 0.99028 val_loss= nan val_acc= 0.32117 time= 2.60915 Epoch: 0083 train_loss= 0.04416 train_acc= 0.99129 val_loss= nan val_acc= 0.32117 time= 2.55736 Epoch: 0084 train_loss= 0.04580 train_acc= 0.98987 val_loss= nan val_acc= 0.32117 time= 2.48007 Epoch: 0085 train_loss= 0.04266 train_acc= 0.99169 val_loss= nan val_acc= 0.32117 time= 2.55349 Epoch: 0086 train_loss= 0.04031 train_acc= 0.99190 val_loss= nan val_acc= 0.32117 time= 2.54955 Epoch: 0087 train_loss= 0.03944 train_acc= 0.99190 val_loss= nan val_acc= 0.32117 time= 2.33307 Epoch: 0088 train_loss= 0.04018 train_acc= 0.99190 val_loss= nan val_acc= 0.32117 time= 2.49014 Epoch: 0089 train_loss= 0.03806 train_acc= 0.99230 val_loss= nan val_acc= 0.32117 time= 2.42449 Epoch: 0090 train_loss= 0.03667 train_acc= 0.99230 val_loss= nan val_acc= 0.32117 time= 2.67252 Epoch: 0091 train_loss= 0.03799 train_acc= 0.99291 val_loss= nan val_acc= 0.32117 time= 2.57552 Epoch: 0092 train_loss= 0.03489 train_acc= 0.99210 val_loss= nan val_acc= 0.32117 time= 2.41641 Epoch: 0093 train_loss= 0.03438 train_acc= 0.99433 val_loss= nan val_acc= 0.32117 time= 2.54833 Epoch: 0094 train_loss= 0.03502 train_acc= 0.99413 val_loss= nan val_acc= 0.32117 time= 2.47512 Epoch: 0095 train_loss= 0.03404 train_acc= 0.99291 val_loss= nan val_acc= 0.32117 time= 2.61559 Epoch: 0096 train_loss= 0.03194 train_acc= 0.99271 val_loss= nan val_acc= 0.32117 time= 2.32975 Epoch: 0097 train_loss= 0.03148 train_acc= 0.99413 val_loss= nan val_acc= 0.32117 time= 2.54627 Epoch: 0098 train_loss= 0.03027 train_acc= 0.99473 val_loss= nan val_acc= 0.32117 time= 2.60389 Epoch: 0099 train_loss= 0.03030 train_acc= 0.99433 val_loss= nan val_acc= 0.32117 time= 2.67167 Epoch: 0100 train_loss= 0.02928 train_acc= 0.99433 val_loss= nan val_acc= 0.32117 time= 2.45379 Epoch: 0101 train_loss= 0.02864 train_acc= 0.99494 val_loss= nan val_acc= 0.32117 time= 2.40216 Epoch: 0102 train_loss= 0.02695 train_acc= 0.99453 val_loss= nan val_acc= 0.32117 time= 2.38281 Epoch: 0103 train_loss= 0.02705 train_acc= 0.99534 val_loss= nan val_acc= 0.32117 time= 2.45374 Epoch: 0104 train_loss= 0.02878 train_acc= 0.99494 val_loss= nan val_acc= 0.32117 time= 2.33660 Epoch: 0105 train_loss= 0.02560 train_acc= 0.99494 val_loss= nan val_acc= 0.32117 time= 2.46241 Epoch: 0106 train_loss= 0.02520 train_acc= 0.99514 val_loss= nan val_acc= 0.32117 time= 2.53520 Epoch: 0107 train_loss= 0.02649 train_acc= 0.99433 val_loss= nan val_acc= 0.32117 time= 2.53673 Epoch: 0108 train_loss= 0.02551 train_acc= 0.99494 val_loss= nan val_acc= 0.32117 time= 2.58581 Epoch: 0109 train_loss= 0.02476 train_acc= 0.99514 val_loss= nan val_acc= 0.32117 time= 2.59459 Epoch: 0110 train_loss= 0.02362 train_acc= 0.99473 val_loss= nan val_acc= 0.32117 time= 2.40176 Epoch: 0111 train_loss= 0.02432 train_acc= 0.99514 val_loss= nan val_acc= 0.32117 time= 2.38593 Epoch: 0112 train_loss= 0.02211 train_acc= 0.99656 val_loss= nan val_acc= 0.32117 time= 2.43226 Epoch: 0113 train_loss= 0.02265 train_acc= 0.99615 val_loss= nan val_acc= 0.32117 time= 2.31928 Epoch: 0114 train_loss= 0.02149 train_acc= 0.99635 val_loss= nan val_acc= 0.32117 time= 2.65328 Epoch: 0115 train_loss= 0.02208 train_acc= 0.99554 val_loss= nan val_acc= 0.32117 time= 2.51178 Epoch: 0116 train_loss= 0.02103 train_acc= 0.99656 val_loss= nan val_acc= 0.32117 time= 2.51010 Epoch: 0117 train_loss= 0.02052 train_acc= 0.99635 val_loss= nan val_acc= 0.32117 time= 2.61634 Epoch: 0118 train_loss= 0.02000 train_acc= 0.99635 val_loss= nan val_acc= 0.32117 time= 2.51400 Epoch: 0119 train_loss= 0.01968 train_acc= 0.99595 val_loss= nan val_acc= 0.32117 time= 2.62318 Epoch: 0120 train_loss= 0.01959 train_acc= 0.99656 val_loss= nan val_acc= 0.32117 time= 2.54576 Epoch: 0121 train_loss= 0.01953 train_acc= 0.99615 val_loss= nan val_acc= 0.32117 time= 2.49061 Epoch: 0122 train_loss= 0.01817 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.48426 Epoch: 0123 train_loss= 0.01852 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.39592 Epoch: 0124 train_loss= 0.01804 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.46380 Epoch: 0125 train_loss= 0.01751 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.48109 Epoch: 0126 train_loss= 0.01786 train_acc= 0.99737 val_loss= nan val_acc= 0.32117 time= 2.46414 Epoch: 0127 train_loss= 0.01748 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.30126 Epoch: 0128 train_loss= 0.01651 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.57740 Epoch: 0129 train_loss= 0.01745 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.37804 Epoch: 0130 train_loss= 0.01800 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.39581 Epoch: 0131 train_loss= 0.01570 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.34141 Epoch: 0132 train_loss= 0.01707 train_acc= 0.99656 val_loss= nan val_acc= 0.32117 time= 2.42393 Epoch: 0133 train_loss= 0.01635 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.29725 Epoch: 0134 train_loss= 0.01489 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.49231 Epoch: 0135 train_loss= 0.01614 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.35138 Epoch: 0136 train_loss= 0.01557 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.20584 Epoch: 0137 train_loss= 0.01477 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.36589 Epoch: 0138 train_loss= 0.01502 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.36767 Epoch: 0139 train_loss= 0.01441 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.51541 Epoch: 0140 train_loss= 0.01434 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.54680 Epoch: 0141 train_loss= 0.01463 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.46273 Epoch: 0142 train_loss= 0.01367 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.46355 Epoch: 0143 train_loss= 0.01399 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.49396 Epoch: 0144 train_loss= 0.01383 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.39091 Epoch: 0145 train_loss= 0.01264 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.54578 Epoch: 0146 train_loss= 0.01309 train_acc= 0.99737 val_loss= nan val_acc= 0.32117 time= 2.34139 Epoch: 0147 train_loss= 0.01279 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.36023 Epoch: 0148 train_loss= 0.01259 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.41666 Epoch: 0149 train_loss= 0.01323 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.55719 Epoch: 0150 train_loss= 0.01221 train_acc= 0.99737 val_loss= nan val_acc= 0.32117 time= 2.31748 Epoch: 0151 train_loss= 0.01226 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.25113 Epoch: 0152 train_loss= 0.01157 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.34178 Epoch: 0153 train_loss= 0.01168 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.54862 Epoch: 0154 train_loss= 0.01303 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.38928 Epoch: 0155 train_loss= 0.01297 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.59955 Epoch: 0156 train_loss= 0.01169 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.41674 Epoch: 0157 train_loss= 0.01113 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.31280 Epoch: 0158 train_loss= 0.01156 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.43748 Epoch: 0159 train_loss= 0.01103 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.41130 Epoch: 0160 train_loss= 0.01104 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.37633 Epoch: 0161 train_loss= 0.01056 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.52587 Epoch: 0162 train_loss= 0.01047 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.55117 Epoch: 0163 train_loss= 0.01022 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.43270 Epoch: 0164 train_loss= 0.01067 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.69437 Epoch: 0165 train_loss= 0.00991 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.44006 Epoch: 0166 train_loss= 0.01034 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.41904 Epoch: 0167 train_loss= 0.01026 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.22751 Epoch: 0168 train_loss= 0.01039 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.59061 Epoch: 0169 train_loss= 0.01004 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.32812 Epoch: 0170 train_loss= 0.01007 train_acc= 0.99858 val_loss= nan val_acc= 0.32117 time= 2.65901 Epoch: 0171 train_loss= 0.01011 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.42729 Epoch: 0172 train_loss= 0.00957 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.33333 Epoch: 0173 train_loss= 0.01010 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.37304 Epoch: 0174 train_loss= 0.01038 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.43272 Epoch: 0175 train_loss= 0.00918 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.62734 Epoch: 0176 train_loss= 0.00945 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.33482 Epoch: 0177 train_loss= 0.00963 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.39062 Epoch: 0178 train_loss= 0.00976 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.28254 Epoch: 0179 train_loss= 0.00888 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.38773 Epoch: 0180 train_loss= 0.00962 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.76122 Epoch: 0181 train_loss= 0.00987 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.54829 Epoch: 0182 train_loss= 0.00910 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.46872 Epoch: 0183 train_loss= 0.01060 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.36129 Epoch: 0184 train_loss= 0.00933 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.47207 Epoch: 0185 train_loss= 0.00859 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.60163 Epoch: 0186 train_loss= 0.00892 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.26298 Epoch: 0187 train_loss= 0.00914 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.37304 Epoch: 0188 train_loss= 0.00936 train_acc= 0.99737 val_loss= nan val_acc= 0.32117 time= 2.45225 Epoch: 0189 train_loss= 0.00873 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.39466 Epoch: 0190 train_loss= 0.00936 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.53997 Epoch: 0191 train_loss= 0.00832 train_acc= 0.99878 val_loss= nan val_acc= 0.32117 time= 2.59912 Epoch: 0192 train_loss= 0.00849 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.52384 Epoch: 0193 train_loss= 0.00842 train_acc= 0.99878 val_loss= nan val_acc= 0.32117 time= 2.54080 Epoch: 0194 train_loss= 0.00830 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.56574 Epoch: 0195 train_loss= 0.00794 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.45157 Epoch: 0196 train_loss= 0.00850 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.58926 Epoch: 0197 train_loss= 0.00881 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.45261 Epoch: 0198 train_loss= 0.00817 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.46599 Epoch: 0199 train_loss= 0.00806 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.52751 Epoch: 0200 train_loss= 0.00857 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.34088 Optimization Finished! Test set results: cost= nan accuracy= 0.31795 time= 0.81085
The text was updated successfully, but these errors were encountered:
作者您好,我也发生了相同的问题。在浏览前面的问题时,看您提到过,通过降低学习率做尝试,但并没有效果。整体的复现也是按照readme来的,请问有可能是什么原因造成这种情况的呢? 非常感谢您的回复。
Sorry, something went wrong.
是否曾因为版本不符而修改过TensorFlow的一些语句?我也有类似的问题,重新修改相关语句后已成功解决。
你好,可以请教一下是怎么解决的吗
No branches or pull requests
作者您好,我在复现时出现验证集和测试集loss为nan情况,请问可能是什么原因造成的?
非常感谢!
Epoch: 0001 train_loss= 2.07928 train_acc= 0.23030 val_loss= nan val_acc= 0.32117 time= 2.65600
Epoch: 0002 train_loss= 2.01573 train_acc= 0.77091 val_loss= nan val_acc= 0.32117 time= 2.52879
Epoch: 0003 train_loss= 1.91171 train_acc= 0.75977 val_loss= nan val_acc= 0.32117 time= 2.45211
Epoch: 0004 train_loss= 1.78018 train_acc= 0.76200 val_loss= nan val_acc= 0.32117 time= 2.43472
Epoch: 0005 train_loss= 1.63068 train_acc= 0.74985 val_loss= nan val_acc= 0.32117 time= 2.50082
Epoch: 0006 train_loss= 1.48861 train_acc= 0.74742 val_loss= nan val_acc= 0.32117 time= 2.56341
Epoch: 0007 train_loss= 1.38061 train_acc= 0.73000 val_loss= nan val_acc= 0.32117 time= 2.46355
Epoch: 0008 train_loss= 1.29031 train_acc= 0.67389 val_loss= nan val_acc= 0.32117 time= 2.63429
Epoch: 0009 train_loss= 1.22601 train_acc= 0.59186 val_loss= nan val_acc= 0.32117 time= 2.51430
Epoch: 0010 train_loss= 1.16189 train_acc= 0.56391 val_loss= nan val_acc= 0.32117 time= 2.33937
Epoch: 0011 train_loss= 1.09515 train_acc= 0.57545 val_loss= nan val_acc= 0.32117 time= 2.54391
Epoch: 0012 train_loss= 1.03070 train_acc= 0.60867 val_loss= nan val_acc= 0.32117 time= 2.50400
Epoch: 0013 train_loss= 0.95400 train_acc= 0.68159 val_loss= nan val_acc= 0.32117 time= 2.34988
Epoch: 0014 train_loss= 0.88769 train_acc= 0.75491 val_loss= nan val_acc= 0.32117 time= 2.64189
Epoch: 0015 train_loss= 0.82062 train_acc= 0.78043 val_loss= nan val_acc= 0.32117 time= 2.40145
Epoch: 0016 train_loss= 0.77129 train_acc= 0.78104 val_loss= nan val_acc= 0.32117 time= 2.48341
Epoch: 0017 train_loss= 0.72617 train_acc= 0.78266 val_loss= nan val_acc= 0.32117 time= 2.45733
Epoch: 0018 train_loss= 0.68917 train_acc= 0.79036 val_loss= nan val_acc= 0.32117 time= 2.84410
Epoch: 0019 train_loss= 0.66309 train_acc= 0.80778 val_loss= nan val_acc= 0.32117 time= 2.53790
Epoch: 0020 train_loss= 0.63271 train_acc= 0.83857 val_loss= nan val_acc= 0.32117 time= 2.36713
Epoch: 0021 train_loss= 0.60310 train_acc= 0.85335 val_loss= nan val_acc= 0.32117 time= 2.40726
Epoch: 0022 train_loss= 0.57907 train_acc= 0.86328 val_loss= nan val_acc= 0.32117 time= 2.35343
Epoch: 0023 train_loss= 0.55026 train_acc= 0.86773 val_loss= nan val_acc= 0.32117 time= 2.36145
Epoch: 0024 train_loss= 0.52539 train_acc= 0.87503 val_loss= nan val_acc= 0.32117 time= 2.54975
Epoch: 0025 train_loss= 0.50089 train_acc= 0.87989 val_loss= nan val_acc= 0.32117 time= 2.34190
Epoch: 0026 train_loss= 0.47744 train_acc= 0.88211 val_loss= nan val_acc= 0.32117 time= 2.42881
Epoch: 0027 train_loss= 0.45458 train_acc= 0.89285 val_loss= nan val_acc= 0.32117 time= 2.45021
Epoch: 0028 train_loss= 0.43473 train_acc= 0.89143 val_loss= nan val_acc= 0.32117 time= 2.50036
Epoch: 0029 train_loss= 0.40996 train_acc= 0.90257 val_loss= nan val_acc= 0.32117 time= 3.01274
Epoch: 0030 train_loss= 0.39648 train_acc= 0.90196 val_loss= nan val_acc= 0.32117 time= 5.04990
Epoch: 0031 train_loss= 0.37891 train_acc= 0.90379 val_loss= nan val_acc= 0.32117 time= 5.03217
Epoch: 0032 train_loss= 0.36177 train_acc= 0.91169 val_loss= nan val_acc= 0.32117 time= 2.40506
Epoch: 0033 train_loss= 0.34688 train_acc= 0.91533 val_loss= nan val_acc= 0.32117 time= 2.30696
Epoch: 0034 train_loss= 0.32800 train_acc= 0.92121 val_loss= nan val_acc= 0.32117 time= 2.43240
Epoch: 0035 train_loss= 0.31175 train_acc= 0.92506 val_loss= nan val_acc= 0.32117 time= 2.31022
Epoch: 0036 train_loss= 0.29964 train_acc= 0.92870 val_loss= nan val_acc= 0.32117 time= 2.39205
Epoch: 0037 train_loss= 0.28558 train_acc= 0.93296 val_loss= nan val_acc= 0.32117 time= 2.40226
Epoch: 0038 train_loss= 0.27217 train_acc= 0.93741 val_loss= nan val_acc= 0.32117 time= 2.46458
Epoch: 0039 train_loss= 0.25874 train_acc= 0.93944 val_loss= nan val_acc= 0.32117 time= 2.50741
Epoch: 0040 train_loss= 0.24668 train_acc= 0.94166 val_loss= nan val_acc= 0.32117 time= 2.40061
Epoch: 0041 train_loss= 0.23751 train_acc= 0.94470 val_loss= nan val_acc= 0.32117 time= 2.44478
Epoch: 0042 train_loss= 0.22154 train_acc= 0.95017 val_loss= nan val_acc= 0.32117 time= 2.37206
Epoch: 0043 train_loss= 0.21236 train_acc= 0.95402 val_loss= nan val_acc= 0.32117 time= 2.44820
Epoch: 0044 train_loss= 0.19870 train_acc= 0.95503 val_loss= nan val_acc= 0.32117 time= 2.39960
Epoch: 0045 train_loss= 0.19212 train_acc= 0.95686 val_loss= nan val_acc= 0.32117 time= 2.75499
Epoch: 0046 train_loss= 0.18108 train_acc= 0.96010 val_loss= nan val_acc= 0.32117 time= 2.42976
Epoch: 0047 train_loss= 0.17043 train_acc= 0.96273 val_loss= nan val_acc= 0.32117 time= 2.52861
Epoch: 0048 train_loss= 0.16526 train_acc= 0.96172 val_loss= nan val_acc= 0.32117 time= 2.52610
Epoch: 0049 train_loss= 0.15962 train_acc= 0.96415 val_loss= nan val_acc= 0.32117 time= 2.42181
Epoch: 0050 train_loss= 0.15042 train_acc= 0.96597 val_loss= nan val_acc= 0.32117 time= 2.64140
Epoch: 0051 train_loss= 0.14265 train_acc= 0.96617 val_loss= nan val_acc= 0.32117 time= 2.57291
Epoch: 0052 train_loss= 0.13148 train_acc= 0.97043 val_loss= nan val_acc= 0.32117 time= 2.40228
Epoch: 0053 train_loss= 0.12872 train_acc= 0.97124 val_loss= nan val_acc= 0.32117 time= 2.51607
Epoch: 0054 train_loss= 0.12205 train_acc= 0.97225 val_loss= nan val_acc= 0.32117 time= 2.55258
Epoch: 0055 train_loss= 0.11693 train_acc= 0.97428 val_loss= nan val_acc= 0.32117 time= 2.64202
Epoch: 0056 train_loss= 0.11393 train_acc= 0.97286 val_loss= nan val_acc= 0.32117 time= 2.55240
Epoch: 0057 train_loss= 0.10748 train_acc= 0.97509 val_loss= nan val_acc= 0.32117 time= 2.36710
Epoch: 0058 train_loss= 0.10186 train_acc= 0.97590 val_loss= nan val_acc= 0.32117 time= 2.47185
Epoch: 0059 train_loss= 0.09597 train_acc= 0.97812 val_loss= nan val_acc= 0.32117 time= 2.31466
Epoch: 0060 train_loss= 0.09626 train_acc= 0.97873 val_loss= nan val_acc= 0.32117 time= 2.30629
Epoch: 0061 train_loss= 0.08930 train_acc= 0.97893 val_loss= nan val_acc= 0.32117 time= 2.26337
Epoch: 0062 train_loss= 0.08495 train_acc= 0.98197 val_loss= nan val_acc= 0.32117 time= 2.36974
Epoch: 0063 train_loss= 0.08541 train_acc= 0.97995 val_loss= nan val_acc= 0.32117 time= 2.42046
Epoch: 0064 train_loss= 0.08166 train_acc= 0.98157 val_loss= nan val_acc= 0.32117 time= 2.44093
Epoch: 0065 train_loss= 0.07523 train_acc= 0.98298 val_loss= nan val_acc= 0.32117 time= 2.23188
Epoch: 0066 train_loss= 0.07568 train_acc= 0.98298 val_loss= nan val_acc= 0.32117 time= 2.36673
Epoch: 0067 train_loss= 0.07194 train_acc= 0.98157 val_loss= nan val_acc= 0.32117 time= 2.46660
Epoch: 0068 train_loss= 0.07120 train_acc= 0.98298 val_loss= nan val_acc= 0.32117 time= 2.50214
Epoch: 0069 train_loss= 0.06753 train_acc= 0.98481 val_loss= nan val_acc= 0.32117 time= 2.38757
Epoch: 0070 train_loss= 0.06485 train_acc= 0.98400 val_loss= nan val_acc= 0.32117 time= 2.42465
Epoch: 0071 train_loss= 0.06490 train_acc= 0.98440 val_loss= nan val_acc= 0.32117 time= 2.35781
Epoch: 0072 train_loss= 0.06169 train_acc= 0.98623 val_loss= nan val_acc= 0.32117 time= 2.34908
Epoch: 0073 train_loss= 0.05782 train_acc= 0.98805 val_loss= nan val_acc= 0.32117 time= 2.38237
Epoch: 0074 train_loss= 0.05849 train_acc= 0.98764 val_loss= nan val_acc= 0.32117 time= 2.55141
Epoch: 0075 train_loss= 0.05523 train_acc= 0.98805 val_loss= nan val_acc= 0.32117 time= 2.40528
Epoch: 0076 train_loss= 0.05511 train_acc= 0.98744 val_loss= nan val_acc= 0.32117 time= 2.42923
Epoch: 0077 train_loss= 0.05031 train_acc= 0.98947 val_loss= nan val_acc= 0.32117 time= 2.38595
Epoch: 0078 train_loss= 0.04973 train_acc= 0.98967 val_loss= nan val_acc= 0.32117 time= 2.31613
Epoch: 0079 train_loss= 0.04927 train_acc= 0.98785 val_loss= nan val_acc= 0.32117 time= 2.46006
Epoch: 0080 train_loss= 0.04808 train_acc= 0.98967 val_loss= nan val_acc= 0.32117 time= 2.59593
Epoch: 0081 train_loss= 0.04598 train_acc= 0.99109 val_loss= nan val_acc= 0.32117 time= 2.44770
Epoch: 0082 train_loss= 0.04472 train_acc= 0.99028 val_loss= nan val_acc= 0.32117 time= 2.60915
Epoch: 0083 train_loss= 0.04416 train_acc= 0.99129 val_loss= nan val_acc= 0.32117 time= 2.55736
Epoch: 0084 train_loss= 0.04580 train_acc= 0.98987 val_loss= nan val_acc= 0.32117 time= 2.48007
Epoch: 0085 train_loss= 0.04266 train_acc= 0.99169 val_loss= nan val_acc= 0.32117 time= 2.55349
Epoch: 0086 train_loss= 0.04031 train_acc= 0.99190 val_loss= nan val_acc= 0.32117 time= 2.54955
Epoch: 0087 train_loss= 0.03944 train_acc= 0.99190 val_loss= nan val_acc= 0.32117 time= 2.33307
Epoch: 0088 train_loss= 0.04018 train_acc= 0.99190 val_loss= nan val_acc= 0.32117 time= 2.49014
Epoch: 0089 train_loss= 0.03806 train_acc= 0.99230 val_loss= nan val_acc= 0.32117 time= 2.42449
Epoch: 0090 train_loss= 0.03667 train_acc= 0.99230 val_loss= nan val_acc= 0.32117 time= 2.67252
Epoch: 0091 train_loss= 0.03799 train_acc= 0.99291 val_loss= nan val_acc= 0.32117 time= 2.57552
Epoch: 0092 train_loss= 0.03489 train_acc= 0.99210 val_loss= nan val_acc= 0.32117 time= 2.41641
Epoch: 0093 train_loss= 0.03438 train_acc= 0.99433 val_loss= nan val_acc= 0.32117 time= 2.54833
Epoch: 0094 train_loss= 0.03502 train_acc= 0.99413 val_loss= nan val_acc= 0.32117 time= 2.47512
Epoch: 0095 train_loss= 0.03404 train_acc= 0.99291 val_loss= nan val_acc= 0.32117 time= 2.61559
Epoch: 0096 train_loss= 0.03194 train_acc= 0.99271 val_loss= nan val_acc= 0.32117 time= 2.32975
Epoch: 0097 train_loss= 0.03148 train_acc= 0.99413 val_loss= nan val_acc= 0.32117 time= 2.54627
Epoch: 0098 train_loss= 0.03027 train_acc= 0.99473 val_loss= nan val_acc= 0.32117 time= 2.60389
Epoch: 0099 train_loss= 0.03030 train_acc= 0.99433 val_loss= nan val_acc= 0.32117 time= 2.67167
Epoch: 0100 train_loss= 0.02928 train_acc= 0.99433 val_loss= nan val_acc= 0.32117 time= 2.45379
Epoch: 0101 train_loss= 0.02864 train_acc= 0.99494 val_loss= nan val_acc= 0.32117 time= 2.40216
Epoch: 0102 train_loss= 0.02695 train_acc= 0.99453 val_loss= nan val_acc= 0.32117 time= 2.38281
Epoch: 0103 train_loss= 0.02705 train_acc= 0.99534 val_loss= nan val_acc= 0.32117 time= 2.45374
Epoch: 0104 train_loss= 0.02878 train_acc= 0.99494 val_loss= nan val_acc= 0.32117 time= 2.33660
Epoch: 0105 train_loss= 0.02560 train_acc= 0.99494 val_loss= nan val_acc= 0.32117 time= 2.46241
Epoch: 0106 train_loss= 0.02520 train_acc= 0.99514 val_loss= nan val_acc= 0.32117 time= 2.53520
Epoch: 0107 train_loss= 0.02649 train_acc= 0.99433 val_loss= nan val_acc= 0.32117 time= 2.53673
Epoch: 0108 train_loss= 0.02551 train_acc= 0.99494 val_loss= nan val_acc= 0.32117 time= 2.58581
Epoch: 0109 train_loss= 0.02476 train_acc= 0.99514 val_loss= nan val_acc= 0.32117 time= 2.59459
Epoch: 0110 train_loss= 0.02362 train_acc= 0.99473 val_loss= nan val_acc= 0.32117 time= 2.40176
Epoch: 0111 train_loss= 0.02432 train_acc= 0.99514 val_loss= nan val_acc= 0.32117 time= 2.38593
Epoch: 0112 train_loss= 0.02211 train_acc= 0.99656 val_loss= nan val_acc= 0.32117 time= 2.43226
Epoch: 0113 train_loss= 0.02265 train_acc= 0.99615 val_loss= nan val_acc= 0.32117 time= 2.31928
Epoch: 0114 train_loss= 0.02149 train_acc= 0.99635 val_loss= nan val_acc= 0.32117 time= 2.65328
Epoch: 0115 train_loss= 0.02208 train_acc= 0.99554 val_loss= nan val_acc= 0.32117 time= 2.51178
Epoch: 0116 train_loss= 0.02103 train_acc= 0.99656 val_loss= nan val_acc= 0.32117 time= 2.51010
Epoch: 0117 train_loss= 0.02052 train_acc= 0.99635 val_loss= nan val_acc= 0.32117 time= 2.61634
Epoch: 0118 train_loss= 0.02000 train_acc= 0.99635 val_loss= nan val_acc= 0.32117 time= 2.51400
Epoch: 0119 train_loss= 0.01968 train_acc= 0.99595 val_loss= nan val_acc= 0.32117 time= 2.62318
Epoch: 0120 train_loss= 0.01959 train_acc= 0.99656 val_loss= nan val_acc= 0.32117 time= 2.54576
Epoch: 0121 train_loss= 0.01953 train_acc= 0.99615 val_loss= nan val_acc= 0.32117 time= 2.49061
Epoch: 0122 train_loss= 0.01817 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.48426
Epoch: 0123 train_loss= 0.01852 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.39592
Epoch: 0124 train_loss= 0.01804 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.46380
Epoch: 0125 train_loss= 0.01751 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.48109
Epoch: 0126 train_loss= 0.01786 train_acc= 0.99737 val_loss= nan val_acc= 0.32117 time= 2.46414
Epoch: 0127 train_loss= 0.01748 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.30126
Epoch: 0128 train_loss= 0.01651 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.57740
Epoch: 0129 train_loss= 0.01745 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.37804
Epoch: 0130 train_loss= 0.01800 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.39581
Epoch: 0131 train_loss= 0.01570 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.34141
Epoch: 0132 train_loss= 0.01707 train_acc= 0.99656 val_loss= nan val_acc= 0.32117 time= 2.42393
Epoch: 0133 train_loss= 0.01635 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.29725
Epoch: 0134 train_loss= 0.01489 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.49231
Epoch: 0135 train_loss= 0.01614 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.35138
Epoch: 0136 train_loss= 0.01557 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.20584
Epoch: 0137 train_loss= 0.01477 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.36589
Epoch: 0138 train_loss= 0.01502 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.36767
Epoch: 0139 train_loss= 0.01441 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.51541
Epoch: 0140 train_loss= 0.01434 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.54680
Epoch: 0141 train_loss= 0.01463 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.46273
Epoch: 0142 train_loss= 0.01367 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.46355
Epoch: 0143 train_loss= 0.01399 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.49396
Epoch: 0144 train_loss= 0.01383 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.39091
Epoch: 0145 train_loss= 0.01264 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.54578
Epoch: 0146 train_loss= 0.01309 train_acc= 0.99737 val_loss= nan val_acc= 0.32117 time= 2.34139
Epoch: 0147 train_loss= 0.01279 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.36023
Epoch: 0148 train_loss= 0.01259 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.41666
Epoch: 0149 train_loss= 0.01323 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.55719
Epoch: 0150 train_loss= 0.01221 train_acc= 0.99737 val_loss= nan val_acc= 0.32117 time= 2.31748
Epoch: 0151 train_loss= 0.01226 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.25113
Epoch: 0152 train_loss= 0.01157 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.34178
Epoch: 0153 train_loss= 0.01168 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.54862
Epoch: 0154 train_loss= 0.01303 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.38928
Epoch: 0155 train_loss= 0.01297 train_acc= 0.99696 val_loss= nan val_acc= 0.32117 time= 2.59955
Epoch: 0156 train_loss= 0.01169 train_acc= 0.99716 val_loss= nan val_acc= 0.32117 time= 2.41674
Epoch: 0157 train_loss= 0.01113 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.31280
Epoch: 0158 train_loss= 0.01156 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.43748
Epoch: 0159 train_loss= 0.01103 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.41130
Epoch: 0160 train_loss= 0.01104 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.37633
Epoch: 0161 train_loss= 0.01056 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.52587
Epoch: 0162 train_loss= 0.01047 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.55117
Epoch: 0163 train_loss= 0.01022 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.43270
Epoch: 0164 train_loss= 0.01067 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.69437
Epoch: 0165 train_loss= 0.00991 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.44006
Epoch: 0166 train_loss= 0.01034 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.41904
Epoch: 0167 train_loss= 0.01026 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.22751
Epoch: 0168 train_loss= 0.01039 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.59061
Epoch: 0169 train_loss= 0.01004 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.32812
Epoch: 0170 train_loss= 0.01007 train_acc= 0.99858 val_loss= nan val_acc= 0.32117 time= 2.65901
Epoch: 0171 train_loss= 0.01011 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.42729
Epoch: 0172 train_loss= 0.00957 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.33333
Epoch: 0173 train_loss= 0.01010 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.37304
Epoch: 0174 train_loss= 0.01038 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.43272
Epoch: 0175 train_loss= 0.00918 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.62734
Epoch: 0176 train_loss= 0.00945 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.33482
Epoch: 0177 train_loss= 0.00963 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.39062
Epoch: 0178 train_loss= 0.00976 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.28254
Epoch: 0179 train_loss= 0.00888 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.38773
Epoch: 0180 train_loss= 0.00962 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.76122
Epoch: 0181 train_loss= 0.00987 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.54829
Epoch: 0182 train_loss= 0.00910 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.46872
Epoch: 0183 train_loss= 0.01060 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.36129
Epoch: 0184 train_loss= 0.00933 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.47207
Epoch: 0185 train_loss= 0.00859 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.60163
Epoch: 0186 train_loss= 0.00892 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.26298
Epoch: 0187 train_loss= 0.00914 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.37304
Epoch: 0188 train_loss= 0.00936 train_acc= 0.99737 val_loss= nan val_acc= 0.32117 time= 2.45225
Epoch: 0189 train_loss= 0.00873 train_acc= 0.99757 val_loss= nan val_acc= 0.32117 time= 2.39466
Epoch: 0190 train_loss= 0.00936 train_acc= 0.99777 val_loss= nan val_acc= 0.32117 time= 2.53997
Epoch: 0191 train_loss= 0.00832 train_acc= 0.99878 val_loss= nan val_acc= 0.32117 time= 2.59912
Epoch: 0192 train_loss= 0.00849 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.52384
Epoch: 0193 train_loss= 0.00842 train_acc= 0.99878 val_loss= nan val_acc= 0.32117 time= 2.54080
Epoch: 0194 train_loss= 0.00830 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.56574
Epoch: 0195 train_loss= 0.00794 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.45157
Epoch: 0196 train_loss= 0.00850 train_acc= 0.99818 val_loss= nan val_acc= 0.32117 time= 2.58926
Epoch: 0197 train_loss= 0.00881 train_acc= 0.99838 val_loss= nan val_acc= 0.32117 time= 2.45261
Epoch: 0198 train_loss= 0.00817 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.46599
Epoch: 0199 train_loss= 0.00806 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.52751
Epoch: 0200 train_loss= 0.00857 train_acc= 0.99797 val_loss= nan val_acc= 0.32117 time= 2.34088
Optimization Finished!
Test set results: cost= nan accuracy= 0.31795 time= 0.81085
The text was updated successfully, but these errors were encountered: