-
Notifications
You must be signed in to change notification settings - Fork 437
/
build_graph.py
533 lines (447 loc) · 14.2 KB
/
build_graph.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
import os
import random
import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
from utils import loadWord2Vec, clean_str
from math import log
from sklearn import svm
from nltk.corpus import wordnet as wn
from sklearn.feature_extraction.text import TfidfVectorizer
import sys
from scipy.spatial.distance import cosine
if len(sys.argv) != 2:
sys.exit("Use: python build_graph.py <dataset>")
datasets = ['20ng', 'R8', 'R52', 'ohsumed', 'mr']
# build corpus
dataset = sys.argv[1]
if dataset not in datasets:
sys.exit("wrong dataset name")
# Read Word Vectors
# word_vector_file = 'data/glove.6B/glove.6B.300d.txt'
# word_vector_file = 'data/corpus/' + dataset + '_word_vectors.txt'
#_, embd, word_vector_map = loadWord2Vec(word_vector_file)
# word_embeddings_dim = len(embd[0])
word_embeddings_dim = 300
word_vector_map = {}
# shulffing
doc_name_list = []
doc_train_list = []
doc_test_list = []
f = open('data/' + dataset + '.txt', 'r')
lines = f.readlines()
for line in lines:
doc_name_list.append(line.strip())
temp = line.split("\t")
if temp[1].find('test') != -1:
doc_test_list.append(line.strip())
elif temp[1].find('train') != -1:
doc_train_list.append(line.strip())
f.close()
# print(doc_train_list)
# print(doc_test_list)
doc_content_list = []
f = open('data/corpus/' + dataset + '.clean.txt', 'r')
lines = f.readlines()
for line in lines:
doc_content_list.append(line.strip())
f.close()
# print(doc_content_list)
train_ids = []
for train_name in doc_train_list:
train_id = doc_name_list.index(train_name)
train_ids.append(train_id)
print(train_ids)
random.shuffle(train_ids)
# partial labeled data
#train_ids = train_ids[:int(0.2 * len(train_ids))]
train_ids_str = '\n'.join(str(index) for index in train_ids)
f = open('data/' + dataset + '.train.index', 'w')
f.write(train_ids_str)
f.close()
test_ids = []
for test_name in doc_test_list:
test_id = doc_name_list.index(test_name)
test_ids.append(test_id)
print(test_ids)
random.shuffle(test_ids)
test_ids_str = '\n'.join(str(index) for index in test_ids)
f = open('data/' + dataset + '.test.index', 'w')
f.write(test_ids_str)
f.close()
ids = train_ids + test_ids
print(ids)
print(len(ids))
shuffle_doc_name_list = []
shuffle_doc_words_list = []
for id in ids:
shuffle_doc_name_list.append(doc_name_list[int(id)])
shuffle_doc_words_list.append(doc_content_list[int(id)])
shuffle_doc_name_str = '\n'.join(shuffle_doc_name_list)
shuffle_doc_words_str = '\n'.join(shuffle_doc_words_list)
f = open('data/' + dataset + '_shuffle.txt', 'w')
f.write(shuffle_doc_name_str)
f.close()
f = open('data/corpus/' + dataset + '_shuffle.txt', 'w')
f.write(shuffle_doc_words_str)
f.close()
# build vocab
word_freq = {}
word_set = set()
for doc_words in shuffle_doc_words_list:
words = doc_words.split()
for word in words:
word_set.add(word)
if word in word_freq:
word_freq[word] += 1
else:
word_freq[word] = 1
vocab = list(word_set)
vocab_size = len(vocab)
word_doc_list = {}
for i in range(len(shuffle_doc_words_list)):
doc_words = shuffle_doc_words_list[i]
words = doc_words.split()
appeared = set()
for word in words:
if word in appeared:
continue
if word in word_doc_list:
doc_list = word_doc_list[word]
doc_list.append(i)
word_doc_list[word] = doc_list
else:
word_doc_list[word] = [i]
appeared.add(word)
word_doc_freq = {}
for word, doc_list in word_doc_list.items():
word_doc_freq[word] = len(doc_list)
word_id_map = {}
for i in range(vocab_size):
word_id_map[vocab[i]] = i
vocab_str = '\n'.join(vocab)
f = open('data/corpus/' + dataset + '_vocab.txt', 'w')
f.write(vocab_str)
f.close()
'''
Word definitions begin
'''
'''
definitions = []
for word in vocab:
word = word.strip()
synsets = wn.synsets(clean_str(word))
word_defs = []
for synset in synsets:
syn_def = synset.definition()
word_defs.append(syn_def)
word_des = ' '.join(word_defs)
if word_des == '':
word_des = '<PAD>'
definitions.append(word_des)
string = '\n'.join(definitions)
f = open('data/corpus/' + dataset + '_vocab_def.txt', 'w')
f.write(string)
f.close()
tfidf_vec = TfidfVectorizer(max_features=1000)
tfidf_matrix = tfidf_vec.fit_transform(definitions)
tfidf_matrix_array = tfidf_matrix.toarray()
print(tfidf_matrix_array[0], len(tfidf_matrix_array[0]))
word_vectors = []
for i in range(len(vocab)):
word = vocab[i]
vector = tfidf_matrix_array[i]
str_vector = []
for j in range(len(vector)):
str_vector.append(str(vector[j]))
temp = ' '.join(str_vector)
word_vector = word + ' ' + temp
word_vectors.append(word_vector)
string = '\n'.join(word_vectors)
f = open('data/corpus/' + dataset + '_word_vectors.txt', 'w')
f.write(string)
f.close()
word_vector_file = 'data/corpus/' + dataset + '_word_vectors.txt'
_, embd, word_vector_map = loadWord2Vec(word_vector_file)
word_embeddings_dim = len(embd[0])
'''
'''
Word definitions end
'''
# label list
label_set = set()
for doc_meta in shuffle_doc_name_list:
temp = doc_meta.split('\t')
label_set.add(temp[2])
label_list = list(label_set)
label_list_str = '\n'.join(label_list)
f = open('data/corpus/' + dataset + '_labels.txt', 'w')
f.write(label_list_str)
f.close()
# x: feature vectors of training docs, no initial features
# slect 90% training set
train_size = len(train_ids)
val_size = int(0.1 * train_size)
real_train_size = train_size - val_size # - int(0.5 * train_size)
# different training rates
real_train_doc_names = shuffle_doc_name_list[:real_train_size]
real_train_doc_names_str = '\n'.join(real_train_doc_names)
f = open('data/' + dataset + '.real_train.name', 'w')
f.write(real_train_doc_names_str)
f.close()
row_x = []
col_x = []
data_x = []
for i in range(real_train_size):
doc_vec = np.array([0.0 for k in range(word_embeddings_dim)])
doc_words = shuffle_doc_words_list[i]
words = doc_words.split()
doc_len = len(words)
for word in words:
if word in word_vector_map:
word_vector = word_vector_map[word]
# print(doc_vec)
# print(np.array(word_vector))
doc_vec = doc_vec + np.array(word_vector)
for j in range(word_embeddings_dim):
row_x.append(i)
col_x.append(j)
# np.random.uniform(-0.25, 0.25)
data_x.append(doc_vec[j] / doc_len) # doc_vec[j]/ doc_len
# x = sp.csr_matrix((real_train_size, word_embeddings_dim), dtype=np.float32)
x = sp.csr_matrix((data_x, (row_x, col_x)), shape=(
real_train_size, word_embeddings_dim))
y = []
for i in range(real_train_size):
doc_meta = shuffle_doc_name_list[i]
temp = doc_meta.split('\t')
label = temp[2]
one_hot = [0 for l in range(len(label_list))]
label_index = label_list.index(label)
one_hot[label_index] = 1
y.append(one_hot)
y = np.array(y)
print(y)
# tx: feature vectors of test docs, no initial features
test_size = len(test_ids)
row_tx = []
col_tx = []
data_tx = []
for i in range(test_size):
doc_vec = np.array([0.0 for k in range(word_embeddings_dim)])
doc_words = shuffle_doc_words_list[i + train_size]
words = doc_words.split()
doc_len = len(words)
for word in words:
if word in word_vector_map:
word_vector = word_vector_map[word]
doc_vec = doc_vec + np.array(word_vector)
for j in range(word_embeddings_dim):
row_tx.append(i)
col_tx.append(j)
# np.random.uniform(-0.25, 0.25)
data_tx.append(doc_vec[j] / doc_len) # doc_vec[j] / doc_len
# tx = sp.csr_matrix((test_size, word_embeddings_dim), dtype=np.float32)
tx = sp.csr_matrix((data_tx, (row_tx, col_tx)),
shape=(test_size, word_embeddings_dim))
ty = []
for i in range(test_size):
doc_meta = shuffle_doc_name_list[i + train_size]
temp = doc_meta.split('\t')
label = temp[2]
one_hot = [0 for l in range(len(label_list))]
label_index = label_list.index(label)
one_hot[label_index] = 1
ty.append(one_hot)
ty = np.array(ty)
print(ty)
# allx: the the feature vectors of both labeled and unlabeled training instances
# (a superset of x)
# unlabeled training instances -> words
word_vectors = np.random.uniform(-0.01, 0.01,
(vocab_size, word_embeddings_dim))
for i in range(len(vocab)):
word = vocab[i]
if word in word_vector_map:
vector = word_vector_map[word]
word_vectors[i] = vector
row_allx = []
col_allx = []
data_allx = []
for i in range(train_size):
doc_vec = np.array([0.0 for k in range(word_embeddings_dim)])
doc_words = shuffle_doc_words_list[i]
words = doc_words.split()
doc_len = len(words)
for word in words:
if word in word_vector_map:
word_vector = word_vector_map[word]
doc_vec = doc_vec + np.array(word_vector)
for j in range(word_embeddings_dim):
row_allx.append(int(i))
col_allx.append(j)
# np.random.uniform(-0.25, 0.25)
data_allx.append(doc_vec[j] / doc_len) # doc_vec[j]/doc_len
for i in range(vocab_size):
for j in range(word_embeddings_dim):
row_allx.append(int(i + train_size))
col_allx.append(j)
data_allx.append(word_vectors.item((i, j)))
row_allx = np.array(row_allx)
col_allx = np.array(col_allx)
data_allx = np.array(data_allx)
allx = sp.csr_matrix(
(data_allx, (row_allx, col_allx)), shape=(train_size + vocab_size, word_embeddings_dim))
ally = []
for i in range(train_size):
doc_meta = shuffle_doc_name_list[i]
temp = doc_meta.split('\t')
label = temp[2]
one_hot = [0 for l in range(len(label_list))]
label_index = label_list.index(label)
one_hot[label_index] = 1
ally.append(one_hot)
for i in range(vocab_size):
one_hot = [0 for l in range(len(label_list))]
ally.append(one_hot)
ally = np.array(ally)
print(x.shape, y.shape, tx.shape, ty.shape, allx.shape, ally.shape)
'''
Doc word heterogeneous graph
'''
# word co-occurence with context windows
window_size = 20
windows = []
for doc_words in shuffle_doc_words_list:
words = doc_words.split()
length = len(words)
if length <= window_size:
windows.append(words)
else:
# print(length, length - window_size + 1)
for j in range(length - window_size + 1):
window = words[j: j + window_size]
windows.append(window)
# print(window)
word_window_freq = {}
for window in windows:
appeared = set()
for i in range(len(window)):
if window[i] in appeared:
continue
if window[i] in word_window_freq:
word_window_freq[window[i]] += 1
else:
word_window_freq[window[i]] = 1
appeared.add(window[i])
word_pair_count = {}
for window in windows:
for i in range(1, len(window)):
for j in range(0, i):
word_i = window[i]
word_i_id = word_id_map[word_i]
word_j = window[j]
word_j_id = word_id_map[word_j]
if word_i_id == word_j_id:
continue
word_pair_str = str(word_i_id) + ',' + str(word_j_id)
if word_pair_str in word_pair_count:
word_pair_count[word_pair_str] += 1
else:
word_pair_count[word_pair_str] = 1
# two orders
word_pair_str = str(word_j_id) + ',' + str(word_i_id)
if word_pair_str in word_pair_count:
word_pair_count[word_pair_str] += 1
else:
word_pair_count[word_pair_str] = 1
row = []
col = []
weight = []
# pmi as weights
num_window = len(windows)
for key in word_pair_count:
temp = key.split(',')
i = int(temp[0])
j = int(temp[1])
count = word_pair_count[key]
word_freq_i = word_window_freq[vocab[i]]
word_freq_j = word_window_freq[vocab[j]]
pmi = log((1.0 * count / num_window) /
(1.0 * word_freq_i * word_freq_j/(num_window * num_window)))
if pmi <= 0:
continue
row.append(train_size + i)
col.append(train_size + j)
weight.append(pmi)
# word vector cosine similarity as weights
'''
for i in range(vocab_size):
for j in range(vocab_size):
if vocab[i] in word_vector_map and vocab[j] in word_vector_map:
vector_i = np.array(word_vector_map[vocab[i]])
vector_j = np.array(word_vector_map[vocab[j]])
similarity = 1.0 - cosine(vector_i, vector_j)
if similarity > 0.9:
print(vocab[i], vocab[j], similarity)
row.append(train_size + i)
col.append(train_size + j)
weight.append(similarity)
'''
# doc word frequency
doc_word_freq = {}
for doc_id in range(len(shuffle_doc_words_list)):
doc_words = shuffle_doc_words_list[doc_id]
words = doc_words.split()
for word in words:
word_id = word_id_map[word]
doc_word_str = str(doc_id) + ',' + str(word_id)
if doc_word_str in doc_word_freq:
doc_word_freq[doc_word_str] += 1
else:
doc_word_freq[doc_word_str] = 1
for i in range(len(shuffle_doc_words_list)):
doc_words = shuffle_doc_words_list[i]
words = doc_words.split()
doc_word_set = set()
for word in words:
if word in doc_word_set:
continue
j = word_id_map[word]
key = str(i) + ',' + str(j)
freq = doc_word_freq[key]
if i < train_size:
row.append(i)
else:
row.append(i + vocab_size)
col.append(train_size + j)
idf = log(1.0 * len(shuffle_doc_words_list) /
word_doc_freq[vocab[j]])
weight.append(freq * idf)
doc_word_set.add(word)
node_size = train_size + vocab_size + test_size
adj = sp.csr_matrix(
(weight, (row, col)), shape=(node_size, node_size))
# dump objects
f = open("data/ind.{}.x".format(dataset), 'wb')
pkl.dump(x, f)
f.close()
f = open("data/ind.{}.y".format(dataset), 'wb')
pkl.dump(y, f)
f.close()
f = open("data/ind.{}.tx".format(dataset), 'wb')
pkl.dump(tx, f)
f.close()
f = open("data/ind.{}.ty".format(dataset), 'wb')
pkl.dump(ty, f)
f.close()
f = open("data/ind.{}.allx".format(dataset), 'wb')
pkl.dump(allx, f)
f.close()
f = open("data/ind.{}.ally".format(dataset), 'wb')
pkl.dump(ally, f)
f.close()
f = open("data/ind.{}.adj".format(dataset), 'wb')
pkl.dump(adj, f)
f.close()