-
Notifications
You must be signed in to change notification settings - Fork 23
/
lanczos.py
executable file
·68 lines (55 loc) · 1.6 KB
/
lanczos.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import numpy as np
from numpy.linalg import norm
from utils import load_data as dataload
import scipy.sparse as sparse
import pickle
from scipy.linalg import qr, svd
def lanczos(A,k,q):
n = A.shape[0]
Q = np.zeros((n,k+1))
Q[:,0] = q/norm(q)
alpha = 0
beta = 0
for i in range(k):
if i == 0:
q = np.dot(A,Q[:,i])
else:
q = np.dot(A, Q[:,i]) - beta*Q[:,i-1]
alpha = np.dot(q.T, Q[:,i])
q = q - Q[:,i]*alpha
q = q - np.dot(Q[:,:i], np.dot(Q[:,:i].T, q)) # full reorthogonalization
beta = norm(q)
Q[:,i+1] = q/beta
print(i)
Q = Q[:,:k]
Sigma = np.dot(Q.T, np.dot(A, Q))
# A2 = np.dot(Q[:,:k], np.dot(Sigma[:k,:k], Q[:,:k].T))
# return A2
return Q, Sigma
def dense_RandomSVD(A,K):
G = np.random.randn(A.shape[0],K)
B = np.dot(A,G)
Q,R =qr(B,mode='economic')
M = np.dot(np.dot(Q, np.dot(np.dot(Q.T, A),Q)),Q.T)
return M
if __name__=="__main__":
adj, features, y_train, y_val, y_test, train_mask, val_mask, test_mask = dataload('cora')
print(adj.shape)
adj = np.array(sparse.csr_matrix.todense(adj))
# np.save("ADJ_cora.npy",adj)
q = np.random.randn(adj.shape[0],)
Q, sigma = lanczos(adj,100,q)
r = 100
A2 = np.dot(Q[:,:r], np.dot(sigma[:r,:r], Q[:,:r].T))
# u,v,a = svd(adj)
err = norm(adj-A2)/norm(adj)
print(err)
# A = np.random.random((10000,10000))
# A = np.triu(A) + np.triu(A).T
# q = np.random.random((10000,))
# K = 100
# Q, sigma = lanczos(A,K,q)
# r = 100
# A2 = np.dot(Q[:,:r], np.dot(sigma[:r,:r], Q[:,:r].T))
# err = norm(A-A2)/norm(A)
# print(err)