-
Notifications
You must be signed in to change notification settings - Fork 41
/
Copy pathtest.py
45 lines (40 loc) · 1.86 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import sklearn.datasets
import sklearn.model_selection
import sklearn.linear_model
import numpy
import compare_auc_delong_xu
import unittest
import scipy.stats
class TestIris(unittest.TestCase):
@classmethod
def setUpClass(cls):
data = sklearn.datasets.load_iris()
x_train, x_test, y_train, cls.y_test = sklearn.model_selection.train_test_split(
data.data, (data.target == 1).astype(numpy.int), test_size=0.8, random_state=42)
cls.predictions = sklearn.linear_model.LogisticRegression(solver="lbfgs").fit(
x_train, y_train).predict_proba(x_test)[:, 1]
cls.sklearn_auc = sklearn.metrics.roc_auc_score(cls.y_test, cls.predictions)
def test_variance_const(self):
auc, variance = compare_auc_delong_xu.delong_roc_variance(self.y_test, self.predictions)
numpy.testing.assert_allclose(self.sklearn_auc, auc)
numpy.testing.assert_allclose(0.0015359814789736538, variance)
class TestGauss(unittest.TestCase):
x_distr = scipy.stats.norm(0.5, 1)
y_distr = scipy.stats.norm(-0.5, 1)
def test_variance(self):
sample_size_x = 7
sample_size_y = 14
n_trials = 50000
aucs = numpy.empty(n_trials)
variances = numpy.empty(n_trials)
numpy.random.seed(1234235)
labels = numpy.concatenate([numpy.ones(sample_size_x), numpy.zeros(sample_size_y)])
for trial in range(n_trials):
scores = numpy.concatenate([
self.x_distr.rvs(sample_size_x),
self.y_distr.rvs(sample_size_y)])
aucs[trial] = sklearn.metrics.roc_auc_score(labels, scores)
auc_delong, variances[trial] = compare_auc_delong_xu.delong_roc_variance(
labels, scores)
numpy.testing.assert_allclose(aucs[trial], auc_delong)
numpy.testing.assert_allclose(variances.mean(), aucs.var(), rtol=0.1)