-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathrun_nerf_helpers.py
588 lines (470 loc) · 19.3 KB
/
run_nerf_helpers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import torch
# torch.autograd.set_detect_anomaly(True)
import torch.nn as nn
import torch.nn.functional as F
import numpy as np
# from hash_encoding import HashEmbedder, SHEncoder
# Misc
img2mse = lambda x, y: torch.mean((x - y) ** 2)
mse2psnr = lambda x: -10. * torch.log(x) / torch.log(torch.Tensor([10.]))
to8b = lambda x: (255 * np.clip(x, 0, 1)).astype(np.uint8)
def batchify_query(inputs, query_function, batch_size=2 ** 22):
"""
args:
inputs: [..., input_dim]
return:
outputs: [..., output_dim]
"""
input_dim = inputs.shape[-1]
input_shape = inputs.shape
inputs = inputs.view(-1, input_dim) # flatten all but last dim
N = inputs.shape[0]
outputs = []
for i in range(0, N, batch_size):
output = query_function(inputs[i:i + batch_size])
if isinstance(output, tuple):
output = output[0]
outputs.append(output)
outputs = torch.cat(outputs, dim=0)
return outputs.view(*input_shape[:-1], -1) # unflatten
class SineLayer(nn.Module):
# See paper sec. 3.2, final paragraph, and supplement Sec. 1.5 for discussion of omega_0.
# If is_first=True, omega_0 is a frequency factor which simply multiplies the activations before the
# nonlinearity. Different signals may require different omega_0 in the first layer - this is a
# hyperparameter.
# If is_first=False, then the weights will be divided by omega_0 so as to keep the magnitude of
# activations constant, but boost gradients to the weight matrix (see supplement Sec. 1.5)
def __init__(self, in_features, out_features, bias=True,
is_first=False, omega_0=30):
super().__init__()
self.omega_0 = omega_0
self.is_first = is_first
self.in_features = in_features
self.linear = nn.Linear(in_features, out_features, bias=bias)
self.init_weights()
def init_weights(self):
with torch.no_grad():
if self.is_first:
self.linear.weight.uniform_(-1 / self.in_features,
1 / self.in_features)
else:
self.linear.weight.uniform_(-np.sqrt(6 / self.in_features) / self.omega_0,
np.sqrt(6 / self.in_features) / self.omega_0)
def forward(self, input):
return torch.sin(self.omega_0 * self.linear(input))
class SirenNeRF(nn.Module):
def __init__(self, D=8, W=256, input_ch=3, output_ch=4, skips=[4],
first_omega_0=30, hidden_omega_0=1):
"""
"""
super(SirenNeRF, self).__init__()
self.D = D
self.W = W
self.input_ch = input_ch
self.skips = skips
self.pts_linears = nn.ModuleList([SineLayer(input_ch, W, omega_0=first_omega_0, is_first=True)] \
+ [SineLayer(W, W, omega_0=hidden_omega_0) for i in range(D - 1)])
self.output_linear = nn.Linear(W, output_ch)
# with torch.no_grad():
# self.output_linear.weight.uniform_(-np.sqrt(6 / W) / hidden_omega_0,
# np.sqrt(6 / W) / hidden_omega_0)
def forward(self, x):
input_pts = x # torch.split(x, [self.input_ch, self.input_ch_views], dim=-1)
h = input_pts
for i, l in enumerate(self.pts_linears):
h = self.pts_linears[i](h)
outputs = self.output_linear(h)
return outputs
# Positional encoding (section 5.1)
class Embedder:
def __init__(self, **kwargs):
self.kwargs = kwargs
self.create_embedding_fn()
def create_embedding_fn(self):
embed_fns = []
d = self.kwargs['input_dims']
out_dim = 0
if self.kwargs['include_input']:
embed_fns.append(lambda x: x)
out_dim += d
max_freq = self.kwargs['max_freq_log2']
N_freqs = self.kwargs['num_freqs']
if self.kwargs['log_sampling']:
freq_bands = 2. ** torch.linspace(0., max_freq, steps=N_freqs)
else:
freq_bands = torch.linspace(2. ** 0., 2. ** max_freq, steps=N_freqs)
for freq in freq_bands:
for p_fn in self.kwargs['periodic_fns']:
embed_fns.append(lambda x, p_fn=p_fn, freq=freq: p_fn(x * freq))
out_dim += d
self.embed_fns = embed_fns
self.out_dim = out_dim
def embed(self, inputs):
return torch.cat([fn(inputs) for fn in self.embed_fns], -1)
def get_embedder(multires, args, i=0):
if i == -1:
return nn.Identity(), 3
elif i == 0:
embed_kwargs = {
'include_input': True,
'input_dims': 3,
'max_freq_log2': multires - 1,
'num_freqs': multires,
'log_sampling': True,
'periodic_fns': [torch.sin, torch.cos],
}
embedder_obj = Embedder(**embed_kwargs)
embed = lambda x, eo=embedder_obj: eo.embed(x)
out_dim = embedder_obj.out_dim
elif i == 1:
embed = HashEmbedder(bounding_box=args.bounding_box, \
log2_hashmap_size=args.log2_hashmap_size, \
finest_resolution=args.finest_res)
out_dim = embed.out_dim
elif i == 2:
embed = SHEncoder()
out_dim = embed.out_dim
return embed, out_dim
# Small NeRF for Hash embeddings
class NeRFSmall(nn.Module):
def __init__(self,
num_layers=3,
hidden_dim=64,
geo_feat_dim=15,
num_layers_color=2,
hidden_dim_color=16,
input_ch=3,
):
super(NeRFSmall, self).__init__()
self.input_ch = input_ch
self.rgb = torch.nn.Parameter(torch.tensor([0.0]))
# sigma network
self.num_layers = num_layers
self.hidden_dim = hidden_dim
self.geo_feat_dim = geo_feat_dim
sigma_net = []
for l in range(num_layers):
if l == 0:
in_dim = self.input_ch
else:
in_dim = hidden_dim
if l == num_layers - 1:
out_dim = 1 # 1 sigma + 15 SH features for color
else:
out_dim = hidden_dim
sigma_net.append(nn.Linear(in_dim, out_dim, bias=False))
self.sigma_net = nn.ModuleList(sigma_net)
self.color_net = []
for l in range(num_layers_color):
if l == 0:
in_dim = 1
else:
in_dim = hidden_dim_color
if l == num_layers_color - 1:
out_dim = 1
else:
out_dim = hidden_dim_color
self.color_net.append(nn.Linear(in_dim, out_dim, bias=True))
def forward(self, x):
h = x
for l in range(self.num_layers):
h = self.sigma_net[l](h)
h = F.relu(h, inplace=True)
sigma = h
return sigma
class NeRFSmall_c(nn.Module):
def __init__(self,
num_layers=3,
hidden_dim=64,
geo_feat_dim=15,
num_layers_color=2,
hidden_dim_color=16,
input_ch=3,
):
super(NeRFSmall_c, self).__init__()
self.input_ch = input_ch
self.rgb = torch.nn.Parameter(torch.tensor([0.0]))
# sigma network
self.num_layers = num_layers
self.hidden_dim = hidden_dim
self.geo_feat_dim = geo_feat_dim
self.num_layers_color = num_layers_color
sigma_net = []
for l in range(num_layers):
if l == 0:
in_dim = self.input_ch
else:
in_dim = hidden_dim
if l == num_layers - 1:
out_dim = 1 + geo_feat_dim # 1 sigma + 15 SH features for color
else:
out_dim = hidden_dim
sigma_net.append(nn.Linear(in_dim, out_dim, bias=False))
self.sigma_net = nn.ModuleList(sigma_net)
self.color_net = []
for l in range(num_layers_color):
if l == 0:
in_dim = geo_feat_dim
else:
in_dim = hidden_dim_color
if l == num_layers_color - 1:
out_dim = 1
else:
out_dim = hidden_dim_color
self.color_net.append(nn.Linear(in_dim, out_dim, bias=True))
self.color_net = nn.ModuleList(self.color_net)
def forward(self, x):
h = x
for l in range(self.num_layers):
h = self.sigma_net[l](h)
h = F.relu(h, inplace=True)
sigma = h
color = self.color_net[0](sigma[..., 1:])
for l in range(1, self.num_layers_color):
color = F.relu(color, inplace=True)
color = self.color_net[l](color)
return sigma[..., :1], color
class NeRFSmall_bg(nn.Module):
def __init__(self,
num_layers=3,
hidden_dim=64,
geo_feat_dim=15,
num_layers_color=2,
hidden_dim_color=16,
input_ch=3,
):
super(NeRFSmall_bg, self).__init__()
self.input_ch = input_ch
self.rgb = torch.nn.Parameter(torch.tensor([0.0]))
# sigma network
self.num_layers = num_layers
self.hidden_dim = hidden_dim
self.geo_feat_dim = geo_feat_dim
sigma_net = []
for l in range(num_layers):
if l == 0:
in_dim = self.input_ch
else:
in_dim = hidden_dim
if l == num_layers - 1:
out_dim = 1 + geo_feat_dim # 1 sigma + 15 SH features for color
else:
out_dim = hidden_dim
sigma_net.append(nn.Linear(in_dim, out_dim, bias=False))
self.sigma_net = nn.ModuleList(sigma_net)
# color network
self.color_net = []
for l in range(num_layers_color):
if l == 0:
in_dim = input_ch + geo_feat_dim # 1 for sigma, 15 for SH features
else:
in_dim = hidden_dim_color
if l == num_layers_color - 1:
out_dim = 3 # RGB color channels
else:
out_dim = hidden_dim_color
self.color_net.append(nn.Linear(in_dim, out_dim, bias=True))
self.color_net = nn.ModuleList(self.color_net)
def forward(self, x):
h = x
for l in range(self.num_layers):
h = self.sigma_net[l](h)
h = F.relu(h, inplace=True)
sigma = h[..., :1]
geo_feat = h[..., 1:]
# color network
h_color = torch.cat([geo_feat, x], dim=-1) # concatenate sigma and SH features
for l in range(len(self.color_net)):
h_color = self.color_net[l](h_color)
if l < len(self.color_net) - 1:
h_color = F.relu(h_color, inplace=True)
color = torch.sigmoid(h_color) # apply sigmoid activation to get color values in range [0, 1]
return sigma, color
class NeRFSmallPotential(nn.Module):
def __init__(self,
num_layers=3,
hidden_dim=64,
geo_feat_dim=15,
num_layers_color=2,
hidden_dim_color=16,
input_ch=3,
use_f=False
):
super(NeRFSmallPotential, self).__init__()
self.input_ch = input_ch
self.rgb = torch.nn.Parameter(torch.tensor([0.0]))
# sigma network
self.num_layers = num_layers
self.hidden_dim = hidden_dim
self.geo_feat_dim = geo_feat_dim
sigma_net = []
for l in range(num_layers):
if l == 0:
in_dim = self.input_ch
else:
in_dim = hidden_dim
if l == num_layers - 1:
out_dim = hidden_dim # 1 sigma + 15 SH features for color
else:
out_dim = hidden_dim
sigma_net.append(nn.Linear(in_dim, out_dim, bias=False))
self.sigma_net = nn.ModuleList(sigma_net)
self.out = nn.Linear(hidden_dim, 3, bias=True)
self.use_f = use_f
if use_f:
self.out_f = nn.Linear(hidden_dim, hidden_dim, bias=True)
self.out_f2 = nn.Linear(hidden_dim, 3, bias=True)
def forward(self, x):
h = x
for l in range(self.num_layers):
h = self.sigma_net[l](h)
h = F.relu(h, True)
v = self.out(h)
if self.use_f:
f = self.out_f(h)
f = F.relu(f, True)
f = self.out_f2(f)
else:
f = v * 0
return v, f
def save_quiver_plot(u, v, res, save_path, scale=0.00000002):
"""
Args:
u: [H, W], vel along x (W)
v: [H, W], vel along y (H)
res: resolution of the plot along the longest axis; if None, let step = 1
save_path:
"""
import matplotlib.pyplot as plt
import matplotlib
H, W = u.shape
y, x = np.mgrid[0:H, 0:W]
axis_len = max(H, W)
step = 1 if res is None else axis_len // res
xq = [i[::step] for i in x[::step]]
yq = [i[::step] for i in y[::step]]
uq = [i[::step] for i in u[::step]]
vq = [i[::step] for i in v[::step]]
uv_norm = np.sqrt(np.array(uq) ** 2 + np.array(vq) ** 2).max()
short_len = min(H, W)
matplotlib.rcParams['font.size'] = 10 / short_len * axis_len
fig, ax = plt.subplots(figsize=(10 / short_len * W, 10 / short_len * H))
q = ax.quiver(xq, yq, uq, vq, pivot='tail', angles='uv', scale_units='xy', scale=scale / step)
ax.invert_yaxis()
plt.quiverkey(q, X=0.6, Y=1.05, U=uv_norm, label=f'Max arrow length = {uv_norm:.2g}', labelpos='E')
plt.savefig(save_path)
plt.close()
return
# Ray helpers
def get_rays(H, W, K, c2w):
i, j = torch.meshgrid(torch.linspace(0, W - 1, W), torch.linspace(0, H - 1, H),
indexing='ij') # pytorch's meshgrid has indexing='ij'
i = i.t()
j = j.t()
dirs = torch.stack([(i - K[0][2]) / K[0][0], -(j - K[1][2]) / K[1][1], -torch.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = torch.sum(dirs[..., np.newaxis, :] * c2w[:3, :3],
-1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = c2w[:3, -1].expand(rays_d.shape)
return rays_o, rays_d
def get_rays_np(H, W, K, c2w):
i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
dirs = np.stack([(i - K[0][2]) / K[0][0], -(j - K[1][2]) / K[1][1], -np.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3, :3],
-1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = np.broadcast_to(c2w[:3, -1], np.shape(rays_d))
return rays_o, rays_d
def get_rays_np_continuous(H, W, K, c2w):
i, j = np.meshgrid(np.arange(W, dtype=np.float32), np.arange(H, dtype=np.float32), indexing='xy')
random_offset_i = np.random.uniform(0, 1, size=(H, W))
random_offset_j = np.random.uniform(0, 1, size=(H, W))
i = i + random_offset_i
j = j + random_offset_j
i = np.clip(i, 0, W - 1)
j = np.clip(j, 0, H - 1)
dirs = np.stack([(i - K[0][2]) / K[0][0], -(j - K[1][2]) / K[1][1], -np.ones_like(i)], -1)
# Rotate ray directions from camera frame to the world frame
rays_d = np.sum(dirs[..., np.newaxis, :] * c2w[:3, :3],
-1) # dot product, equals to: [c2w.dot(dir) for dir in dirs]
# Translate camera frame's origin to the world frame. It is the origin of all rays.
rays_o = np.broadcast_to(c2w[:3, -1], np.shape(rays_d))
return rays_o, rays_d, i, j
def ndc_rays(H, W, focal, near, rays_o, rays_d):
# Shift ray origins to near plane
t = -(near + rays_o[..., 2]) / rays_d[..., 2]
rays_o = rays_o + t[..., None] * rays_d
# Projection
o0 = -1. / (W / (2. * focal)) * rays_o[..., 0] / rays_o[..., 2]
o1 = -1. / (H / (2. * focal)) * rays_o[..., 1] / rays_o[..., 2]
o2 = 1. + 2. * near / rays_o[..., 2]
d0 = -1. / (W / (2. * focal)) * (rays_d[..., 0] / rays_d[..., 2] - rays_o[..., 0] / rays_o[..., 2])
d1 = -1. / (H / (2. * focal)) * (rays_d[..., 1] / rays_d[..., 2] - rays_o[..., 1] / rays_o[..., 2])
d2 = -2. * near / rays_o[..., 2]
rays_o = torch.stack([o0, o1, o2], -1)
rays_d = torch.stack([d0, d1, d2], -1)
return rays_o, rays_d
def sample_bilinear(img, xy):
"""
Sample image with bilinear interpolation
:param img: (T, V, H, W, 3)
:param xy: (V, 2, H, W)
:return: img: (T, V, H, W, 3)
"""
T, V, H, W, _ = img.shape
u, v = xy[:, 0], xy[:, 1]
u = np.clip(u, 0, W - 1)
v = np.clip(v, 0, H - 1)
u_floor, v_floor = np.floor(u).astype(int), np.floor(v).astype(int)
u_ceil, v_ceil = np.ceil(u).astype(int), np.ceil(v).astype(int)
u_ratio, v_ratio = u - u_floor, v - v_floor
u_ratio, v_ratio = u_ratio[None, ..., None], v_ratio[None, ..., None]
bottom_left = img[:, np.arange(V)[:, None, None], v_floor, u_floor]
bottom_right = img[:, np.arange(V)[:, None, None], v_floor, u_ceil]
top_left = img[:, np.arange(V)[:, None, None], v_ceil, u_floor]
top_right = img[:, np.arange(V)[:, None, None], v_ceil, u_ceil]
bottom = (1 - u_ratio) * bottom_left + u_ratio * bottom_right
top = (1 - u_ratio) * top_left + u_ratio * top_right
interpolated = (1 - v_ratio) * bottom + v_ratio * top
return interpolated
# Hierarchical sampling (section 5.2)
def sample_pdf(bins, weights, N_samples, det=False, pytest=False):
# Get pdf
weights = weights + 1e-5 # prevent nans
pdf = weights / torch.sum(weights, -1, keepdim=True)
cdf = torch.cumsum(pdf, -1)
cdf = torch.cat([torch.zeros_like(cdf[..., :1]), cdf], -1) # (batch, len(bins))
# Take uniform samples
if det:
u = torch.linspace(0., 1., steps=N_samples)
u = u.expand(list(cdf.shape[:-1]) + [N_samples])
else:
u = torch.rand(list(cdf.shape[:-1]) + [N_samples])
# Pytest, overwrite u with numpy's fixed random numbers
if pytest:
np.random.seed(0)
new_shape = list(cdf.shape[:-1]) + [N_samples]
if det:
u = np.linspace(0., 1., N_samples)
u = np.broadcast_to(u, new_shape)
else:
u = np.random.rand(*new_shape)
u = torch.Tensor(u)
# Invert CDF
u = u.contiguous()
inds = torch.searchsorted(cdf, u, right=True)
below = torch.max(torch.zeros_like(inds - 1), inds - 1)
above = torch.min((cdf.shape[-1] - 1) * torch.ones_like(inds), inds)
inds_g = torch.stack([below, above], -1) # (batch, N_samples, 2)
# cdf_g = tf.gather(cdf, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
# bins_g = tf.gather(bins, inds_g, axis=-1, batch_dims=len(inds_g.shape)-2)
matched_shape = [inds_g.shape[0], inds_g.shape[1], cdf.shape[-1]]
cdf_g = torch.gather(cdf.unsqueeze(1).expand(matched_shape), 2, inds_g)
bins_g = torch.gather(bins.unsqueeze(1).expand(matched_shape), 2, inds_g)
denom = (cdf_g[..., 1] - cdf_g[..., 0])
denom = torch.where(denom < 1e-5, torch.ones_like(denom), denom)
t = (u - cdf_g[..., 0]) / denom
samples = bins_g[..., 0] + t * (bins_g[..., 1] - bins_g[..., 0])
return samples