Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Segmentation fault on CUDA 11.0/torch 1.7.1 #1

Open
Owen-Liuyuxuan opened this issue Aug 20, 2021 · 23 comments
Open

Segmentation fault on CUDA 11.0/torch 1.7.1 #1

Owen-Liuyuxuan opened this issue Aug 20, 2021 · 23 comments

Comments

@Owen-Liuyuxuan
Copy link

Thank you for your great contribution.

CUDA 11.0?

I do manage to compile everything in a docker with CUDA 11.0/pytorch 1.7.1. including spconv (it seems that spconv show no error in build and install)

But after it start training for the first step, the code ends with error:

CUDA_VISIBLE_DEVICES=0 ./scripts/dist_train.sh 1 exp_name configs/stereo/kitti_models/liga.3d-and-bev.yaml

subprocess.CalledProcessError: Command '['/usr/bin/python3', '-u', 'tools/train.py', '--local_rank=0', '--launcher', 'pytorch', '--fix_random_seed', '--sync_bn', '--save_to_file', '--cfg_file', 'configs/stereo/kitti_models/liga.3d-and-bev.yaml', '--exp_name', 'exp_name']' died with <Signals.SIGSEGV: 11>.

Then I rewrite your code for single GPU training without distributed training (the re-written code is in my fork repo). Everything looks the same and it turns out to be a segmentation fault.

python3 tools/train.py --cfg configs/stereo/kitti_models/liga.3d-and-bev.yaml --launcher=none --batch_size 1

Segmentation fault (core dumped) 

I have not fully investigated where does it happen.

CUDA 10

I then try using a lower CUDA version, but 3090 only supports CUDA 11+, and the current model is too large to fit into a single 1080Ti/2080Ti (similar to DSGN?).

@xy-guo
Copy link
Owner

xy-guo commented Aug 20, 2021 via email

@Owen-Liuyuxuan
Copy link
Author

In my first try, I used the original launching script and it failed without any additional information.

CUDA_VISIBLE_DEVICES=0 ./scripts/dist_train.sh 1 exp_name configs/stereo/kitti_models/liga.3d-and-bev.yaml

subprocess.CalledProcessError: Command '['/usr/bin/python3', '-u', 'tools/train.py', '--local_rank=0', '--launcher', 'pytorch', '--fix_random_seed', '--sync_bn', '--save_to_file', '--cfg_file', 'configs/stereo/kitti_models/liga.3d-and-bev.yaml', '--exp_name', 'exp_name']' died with <Signals.SIGSEGV: 11>.

I then started without distributed because I want to find out the error, and it turns out to be a segmentation fault.

@Owen-Liuyuxuan
Copy link
Author

epochs:   0%|                                                                                                                                                                                                                                                      | 0/60 [00:00<?, ?it/s]
{'NAME': 'filter_truncated', 'AREA_RATIO_THRESH': None, 'AREA_2D_RATIO_THRESH': None, 'GT_TRUNCATED_THRESH': 0.98}
filter truncated ratio: null 3d boxes [[ 2.93      -4.66      -0.73       4.18       1.86       1.48
  -1.6307963]] flipped False image idx 1040 frame_id 002080 

                                                                                                                                                                                                                                                                                         {'NAME': 'filter_truncated', 'AREA_RATIO_THRESH': None, 'AREA_2D_RATIO_THRESH': None, 'GT_TRUNCATED_THRESH': 0.98}                                                                                                                                                | 0/3712 [00:00<?, ?it/s]
filter truncated ratio: null 3d boxes [[ 2.93      -4.66      -0.73       4.18       1.86       1.48
  -1.6307963]] flipped False image idx 1040 frame_id 002080 

/usr/local/lib/python3.8/dist-packages/torch/optim/lr_scheduler.py:131: UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.  Failure to do this will result in PyTorch skipping the first value of the learning rate schedule. See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate
  warnings.warn("Detected call of `lr_scheduler.step()` before `optimizer.step()`. "
/usr/local/lib/python3.8/dist-packages/torch/optim/lr_scheduler.py:156: UserWarning: The epoch parameter in `scheduler.step()` was not necessary and is being deprecated where possible. Please use `scheduler.step()` to step the scheduler. During the deprecation, if epoch is different from None, the closed form is used instead of the new chainable form, where available. Please open an issue if you are unable to replicate your use case: https://github.com/pytorch/pytorch/issues/new/choose.
  warnings.warn(EPOCH_DEPRECATION_WARNING, UserWarning)
Traceback (most recent call last):
  File "/usr/lib/python3.8/runpy.py", line 194, in _run_module_as_main
    return _run_code(code, main_globals, None,
  File "/usr/lib/python3.8/runpy.py", line 87, in _run_code
    exec(code, run_globals)
  File "/usr/local/lib/python3.8/dist-packages/torch/distributed/launch.py", line 260, in <module>
    main()
  File "/usr/local/lib/python3.8/dist-packages/torch/distributed/launch.py", line 255, in main
    raise subprocess.CalledProcessError(returncode=process.returncode,
subprocess.CalledProcessError: Command '['/usr/bin/python3', '-u', 'tools/train.py', '--local_rank=0', '--launcher', 'pytorch', '--fix_random_seed', '--sync_bn', '--save_to_file', '--cfg_file', 'configs/stereo/kitti_models/liga.3d-and-bev.yaml', '--exp_name', 'exp_name']' died with <Signals.SIGSEGV: 11>.

@xy-guo
Copy link
Owner

xy-guo commented Aug 20, 2021

It's weird. Usually it will output more error messages. btw, did you pull the latest commit?

@Owen-Liuyuxuan
Copy link
Author

Owen-Liuyuxuan commented Sep 3, 2021

The error happened in here

x = self.conv_input(input_sp_tensor)

However, I did not see any error during my compilation and installation of spconv.

>>> torch.__version__
'1.7.1+cu110'
>>> torch.version.cuda
'11.0'

@xy-guo
Copy link
Owner

xy-guo commented Sep 3, 2021

The possible reasons might be:

  • The CUDA versions for compiling spconv and LIGA are different
  • The pytorch version for compiling spconv is different from the pytorch version running LIGA

Can you do some double check?

@Owen-Liuyuxuan
Copy link
Author

The problem maybe that my nvcc version is 11.1 while everything else is 11.0
I need nvcc 11.1+ to install mmcv-full on 3090 (nvcc 11.0 does not support 3090). However, pytorch 1.7.1 does not have cu110 prebuilt wheel. It is rather troublesome.

@xy-guo
Copy link
Owner

xy-guo commented Sep 7, 2021

I think you can use the latest pytorch version

@fengziyue
Copy link

@Owen-Liuyuxuan
Hi, have you tried the latest Pytorch/CUDA version?

@Owen-Liuyuxuan
Copy link
Author

@Owen-Liuyuxuan
Hi, have you tried the latest Pytorch/CUDA version?

Sorry I have not been working on this for a while :( and have not tried that.

@Owen-Liuyuxuan
Copy link
Author

Docker environment:

torch==1.9.1+cu111 torchvision==0.10.1+cu111 mmcv-full=1.2.0 nvcc==11.1.TC455_06 on a RTX 3090 server.

run command:

CUDA_VISIBLE_DEVICES=0 ./scripts/dist_train.sh 1 exp_name configs/stereo/kitti_models/liga.3d-and-bev.yaml
+ python3 -m torch.distributed.launch --nproc_per_node=1 tools/train.py --launcher pytorch --fix_random_seed --sync_bn --save_to_file --cfg_file configs/stereo/kitti_models/liga.3d-and-bev.yaml --exp_name exp_name
  • freezes and no output.
  • ctrl+c: not much useful information comes out.

run command:

CUDA_VISIBLE_DEVICES=0 python3 tools/train.py --launcher none --fix_random_seed --save_to_file --cfg_file configs/stereo/kitti_models/liga.3d-and-bev.yaml --exp_name debug

It starts but still produces segmentation fault and stop here similar to the original result

@xy-guo
Copy link
Owner

xy-guo commented Sep 28, 2021 via email

@Owen-Liuyuxuan
Copy link
Author

I have tried that (by sync and printing along the way), and it stops here:

x = self.conv_input(input_sp_tensor)

https://github.com/xy-guo/LIGA-Stereo/blob/master/liga/models/backbones_3d_lidar/spconv_backbone.py#L385
which is a direct call to the spconv library.

@xy-guo
Copy link
Owner

xy-guo commented Sep 28, 2021

I'm not sure what causes the problem. I've tested my code on a 3070 notebook and everything is fine. I'm not sure if there is a possibility that docker causes the problem?

@xy-guo
Copy link
Owner

xy-guo commented Sep 28, 2021

Another suggestion is that do not use --launcher none, the code is only available in distributed mode.

@Owen-Liuyuxuan
Copy link
Author

Another suggestion is that do not use --launcher none, the code is only available in distributed mode.

The problem is that if the code is launch in distributed mode, I can not get any error message (and any other training logs) and the child process just dies... I have to run in local mode to actually debug.

@Xie-PC
Copy link

Xie-PC commented Nov 22, 2021

I have the same question in a docker with CUDA 10.1/pytorch 1.6.0, do you have salved it?

@xy-guo
Copy link
Owner

xy-guo commented Nov 22, 2021

Have you solved the problem? Maybe you can try using the latest commit of spconv?

@Xie-PC
Copy link

Xie-PC commented Nov 22, 2021

Have you solved the problem? Maybe you can try using the latest commit of spconv?

I have tried following your advice, but it is still the same as before. Now my CUDA 10.2, install spconv by offical 'pip install spconv-cu102' , I will try it in CUDA 11.1.

@BitandPoly
Copy link

Hi,

I faced this problem too. My env is: ubuntu=20.0.6, python=3.7, cuda=11.1, pytorch=1.7.1. My GPU is RTX 8000.

Command I run was:
./scripts/dist_test_ckpt.sh 1 ./configs/stereo/kitti_models/liga.3d-and-bev.yaml ./ckpt/released.final.liga.3d-and-bev.ep53.pth

Pip list is as follows:
Package Version Location


addict 2.4.0
certifi 2021.10.8
cycler 0.11.0
Cython 0.29.28
easydict 1.9
fire 0.4.0
fonttools 4.28.2
imageio 2.16.1
kiwisolver 1.3.2
liga 0.1.0+aee3731 /home/qingwu/LIGA-Stereo
llvmlite 0.38.0
matplotlib 3.5.0
mkl-fft 1.3.1
mkl-random 1.2.2
mkl-service 2.4.0
mmcv-full 1.2.0
mmdet 2.6.0 /home/qingwu/LIGA-Stereo/mmdetection_kitti
mmpycocotools 12.0.3
networkx 2.6.3
numba 0.55.1
numpy 1.21.5
opencv-python 4.5.5.64
packaging 21.3
Pillow 9.0.1
pip 21.2.2
protobuf 3.19.4
pycocotools 2.0
pyparsing 3.0.6
python-dateutil 2.8.2
PyWavelets 1.3.0
PyYAML 5.4.1
scikit-image 0.19.2
scipy 1.7.3
setuptools 58.0.4
setuptools-scm 6.3.2
six 1.16.0
spconv 1.2.1
tensorboardX 2.5
termcolor 1.1.0
terminaltables 3.1.10
tifffile 2021.11.2
tomli 1.2.2
torch 1.7.1
torchaudio 0.7.0a0+a853dff
torchvision 0.8.2
tqdm 4.63.1
typing_extensions 4.1.1
wheel 0.37.1
yapf 0.32.0

The error logs are as follows:

  • python -m torch.distributed.launch --nproc_per_node=1 tools/test.py --launcher pytorch --save_to_file --cfg_file ./configs/stereo/kitti_models/liga.3d-and-bev.yaml --ckpt ./ckpt/released.final.liga.3d-and-bev.ep53.pth
    2022-03-24 22:10:58,747 INFO Start logging
    2022-03-24 22:10:58,747 INFO CUDA_VISIBLE_DEVICES=ALL
    2022-03-24 22:10:58,747 INFO eval output dir: ckpt/released.final.liga.3d-and-bev.ep53.pth.eval/eval/epoch_53/val/default
    2022-03-24 22:10:58,747 INFO total_batch_size: 1
    2022-03-24 22:10:58,747 INFO cfg_file ./configs/stereo/kitti_models/liga.3d-and-bev.yaml
    2022-03-24 22:10:58,747 INFO batch_size 1
    2022-03-24 22:10:58,747 INFO workers 2
    2022-03-24 22:10:58,747 INFO exp_name None
    2022-03-24 22:10:58,747 INFO eval_tag default
    2022-03-24 22:10:58,747 INFO max_waiting_mins 30
    2022-03-24 22:10:58,747 INFO save_to_file True
    2022-03-24 22:10:58,747 INFO ckpt ./ckpt/released.final.liga.3d-and-bev.ep53.pth
    2022-03-24 22:10:58,747 INFO ckpt_id None
    2022-03-24 22:10:58,747 INFO start_epoch 0
    2022-03-24 22:10:58,747 INFO launcher pytorch
    2022-03-24 22:10:58,747 INFO tcp_port 18888
    2022-03-24 22:10:58,747 INFO local_rank 0
    2022-03-24 22:10:58,747 INFO set_cfgs None
    2022-03-24 22:10:58,747 INFO trainval False
    2022-03-24 22:10:58,748 INFO imitation 2d
    2022-03-24 22:10:58,748 INFO cfg.ROOT_DIR: /home/qingwu/LIGA-Stereo
    2022-03-24 22:10:58,748 INFO cfg.LOCAL_RANK: 0
    2022-03-24 22:10:58,748 INFO cfg.CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
    2022-03-24 22:10:58,748 INFO
    cfg.DATA_CONFIG = edict()
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.DATASET: StereoKittiDataset
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.DATA_PATH: ./data/kitti
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.FLIP: True
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.FORCE_FLIP: False
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [2, -30.4, -3, 59.6, 30.4, 1]
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.VOXEL_SIZE: [0.05, 0.05, 0.1]
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.STEREO_VOXEL_SIZE: [0.2, 0.2, 0.2]
    2022-03-24 22:10:58,748 INFO
    cfg.DATA_CONFIG.DATA_SPLIT = edict()
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val
    2022-03-24 22:10:58,748 INFO
    cfg.DATA_CONFIG.INFO_PATH = edict()
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['kitti_infos_train.pkl']
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['kitti_infos_val.pkl']
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.USE_VAN: True
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.USE_PERSON_SITTING: True
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.FOV_POINTS_ONLY: True
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.BOXES_GT_IN_CAM2_VIEW: False
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.GENERATE_CORNER_HEATMAP: False
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.CAT_REFLECT_DIM: False
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.TRAIN_DATA_AUGMENTOR: [{'NAME': 'random_crop', 'MIN_REL_X': 0, 'MAX_REL_X': 0, 'MIN_REL_Y': 1.0, 'MAX_REL_Y': 1.0, 'MAX_CROP_H': 320, 'MAX_CROP_W': 1280}, {'NAME': 'filter_truncated', 'AREA_RATIO_THRESH': None, 'AREA_2D_RATIO_THRESH': None, 'GT_TRUNCATED_THRESH': 0.98}]
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.TEST_DATA_AUGMENTOR: [{'NAME': 'random_crop', 'MIN_REL_X': 0, 'MAX_REL_X': 0, 'MIN_REL_Y': 1.0, 'MAX_REL_Y': 1.0, 'MAX_CROP_H': 320, 'MAX_CROP_W': 1280}]
    2022-03-24 22:10:58,748 INFO
    cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z']
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z']
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}, {'NAME': 'transform_points_to_voxels', 'VOXEL_SIZE': [0.05, 0.05, 0.1], 'MAX_POINTS_PER_VOXEL': 5, 'MAX_NUMBER_OF_VOXELS': {'train': 40000, 'test': 40000}}]
    2022-03-24 22:10:58,749 INFO cfg.DATA_CONFIG.BASE_CONFIG: ./configs/stereo/dataset_configs/kitti_dataset_fused.yaml
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.NAME: stereo_LIGA
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.LIDAR_MODEL = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.NAME: SECONDNet
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.RETURN_BATCH_DICT: True
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.PRETRAINED_MODEL: ./ckpt/second_s4_hg.iouloss.ep78.backbone-no-final-bnrelu.input-only-xyz.default-lr-policy-with-wd-decay-78ep.pth
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.LIDAR_MODEL.VFE = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.VFE.NAME: MeanVFE
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.LIDAR_MODEL.BACKBONE_3D = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.BACKBONE_3D.NAME: VoxelBackBone4xNoFinalBnReLU
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.LIDAR_MODEL.MAP_TO_BEV = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.MAP_TO_BEV.NAME: HeightCompression
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.MAP_TO_BEV.NUM_BEV_FEATURES: 160
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.LIDAR_MODEL.BACKBONE_2D = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.BACKBONE_2D.NAME: HgBEVBackbone
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.BACKBONE_2D.num_channels: 64
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.BACKBONE_2D.GN: False
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.BACKBONE_3D = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.NAME: LigaBackbone
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.maxdisp: 288
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.downsample_disp: 4
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.GN: True
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.img_feature_attentionbydisp: True
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.voxel_attentionbydisp: False
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.cat_img_feature: True
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.num_3dconvs: 1
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.BACKBONE_3D.feature_backbone = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.type: ResNet
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.depth: 34
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.num_stages: 4
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.out_indices: [0, 1, 2, 3]
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.frozen_stages: -1
    2022-03-24 22:10:58,750 INFO
    cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg = edict()
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg.type: BN
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg.requires_grad: True
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_eval: False
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.style: pytorch
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.with_max_pool: False
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.deep_stem: False
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.block_with_final_relu: False
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.base_channels: 64
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.strides: [1, 2, 1, 1]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.dilations: [1, 1, 2, 4]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.num_channels_factor: [1, 2, 2, 2]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone_pretrained: torchvision://resnet34
    2022-03-24 22:10:58,750 INFO
    cfg.MODEL.BACKBONE_3D.feature_neck = edict()
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.GN: True
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.in_dims: [3, 64, 128, 128, 128]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.start_level: 2
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.stereo_dim: [32, 32]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.with_upconv: True
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.cat_img_feature: True
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.sem_dim: [128, 32]
    2022-03-24 22:10:58,750 INFO
    cfg.MODEL.BACKBONE_3D.sem_neck = edict()
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.type: FPN
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.in_channels: [32]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.out_channels: 64
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.start_level: 0
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.add_extra_convs: on_output
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.num_outs: 5
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.cost_volume: [{'type': 'concat', 'downsample': 4}]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.cv_dim: 32
    2022-03-24 22:10:58,751 INFO cfg.MODEL.BACKBONE_3D.rpn3d_dim: 32
    2022-03-24 22:10:58,751 INFO cfg.MODEL.BACKBONE_3D.downsampled_depth_offset: 0.5
    2022-03-24 22:10:58,751 INFO cfg.MODEL.BACKBONE_3D.use_stereo_out_type: feature
    2022-03-24 22:10:58,751 INFO cfg.MODEL.BACKBONE_3D.num_hg: 1
    2022-03-24 22:10:58,751 INFO
    cfg.MODEL.DENSE_HEAD_2D = edict()
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.NAME: MMDet2DHead
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.use_3d_center: True
    2022-03-24 22:10:58,751 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg = edict()
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.type: ATSSAdvHead
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.reg_class_agnostic: False
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.seperate_extra_reg_branch: False
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.num_classes: 3
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.in_channels: 64
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.stacked_convs: 4
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.feat_channels: 64
    2022-03-24 22:10:58,751 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator = edict()
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.type: AnchorGenerator
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.ratios: [1.0]
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.octave_base_scale: 16
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.scales_per_octave: 1
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.strides: [4, 8, 16, 32, 64]
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.num_extra_reg_channel: 0
    2022-03-24 22:10:58,751 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder = edict()
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.type: DeltaXYWHBBoxCoder
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.target_means: [0.0, 0.0, 0.0, 0.0]
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.target_stds: [0.1, 0.1, 0.2, 0.2]
    2022-03-24 22:10:58,751 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls = edict()
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.type: FocalLoss
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.use_sigmoid: True
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.gamma: 2.0
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.alpha: 0.25
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.loss_weight: 1.0
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox.type: GIoULoss
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox.loss_weight: 2.0
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.type: CrossEntropyLoss
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.use_sigmoid: True
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.loss_weight: 1.0
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg = edict()
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner.type: ATSS3DCenterAssigner
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner.topk: 9
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.allowed_border: -1
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.pos_weight: -1
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.append_3d_centers: True
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.debug: False
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms_pre: 1000
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.min_bbox_size: 0
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.score_thr: 0.05
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms.type: nms
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms.iou_threshold: 0.6
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.max_per_img: 100
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.MAP_TO_BEV = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.MAP_TO_BEV.NAME: HeightCompression
    2022-03-24 22:10:58,752 INFO cfg.MODEL.MAP_TO_BEV.NUM_BEV_FEATURES: 160
    2022-03-24 22:10:58,752 INFO cfg.MODEL.MAP_TO_BEV.SPARSE_INPUT: False
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.BACKBONE_2D = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.BACKBONE_2D.NAME: HgBEVBackbone
    2022-03-24 22:10:58,752 INFO cfg.MODEL.BACKBONE_2D.num_channels: 64
    2022-03-24 22:10:58,753 INFO cfg.MODEL.BACKBONE_2D.GN: True
    2022-03-24 22:10:58,753 INFO
    cfg.MODEL.DENSE_HEAD = edict()
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.NAME: DetHead
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.NUM_CONVS: 2
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.GN: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.CLASS_AGNOSTIC: False
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.USE_DIRECTION_CLASSIFIER: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.DIR_OFFSET: 0.78539
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.DIR_LIMIT_OFFSET: 0.0
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.NUM_DIR_BINS: 2
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.CLAMP_VALUE: 10.0
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.xyz_for_angles: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.hwl_for_angles: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.do_feature_imitation: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.imitation_cfg: [{'lidar_feature_layer': 'spatial_features_2d', 'stereo_feature_layer': 'spatial_features_2d', 'normalize': 'cw_scale', 'layer': 'conv2d', 'channel': 64, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}, {'lidar_feature_layer': 'volume_features', 'stereo_feature_layer': 'volume_features', 'normalize': 'cw_scale', 'layer': 'conv3d', 'channel': 32, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}]
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.ANCHOR_GENERATOR_CONFIG: [{'class_name': 'Car', 'anchor_sizes': [[3.9, 1.6, 1.56]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-1.78], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.6, 'unmatched_threshold': 0.45}, {'class_name': 'Pedestrian', 'anchor_sizes': [[0.8, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}, {'class_name': 'Cyclist', 'anchor_sizes': [[1.76, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}]
    2022-03-24 22:10:58,753 INFO
    cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG = edict()
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NAME: AxisAlignedTargetAssigner
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.POS_FRACTION: -1.0
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.SAMPLE_SIZE: 512
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NORM_BY_NUM_EXAMPLES: False
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.MATCH_HEIGHT: False
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER: ResidualCoder
    2022-03-24 22:10:58,753 INFO
    cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG = edict()
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.div_by_diagonal: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.use_corners: False
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.use_tanh: False
    2022-03-24 22:10:58,753 INFO
    cfg.MODEL.DENSE_HEAD.LOSS_CONFIG = edict()
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.REG_LOSS_TYPE: WeightedSmoothL1Loss
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.IOU_LOSS_TYPE: IOU3dLoss
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.IMITATION_LOSS_TYPE: WeightedL2WithSigmaLoss
    2022-03-24 22:10:58,753 INFO
    cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS = edict()
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.cls_weight: 1.0
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.loc_weight: 0.5
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.dir_weight: 0.2
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.iou_weight: 1.0
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.imitation_weight: 1.0
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.code_weights: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
    2022-03-24 22:10:58,754 INFO
    cfg.MODEL.DEPTH_LOSS_HEAD = edict()
    2022-03-24 22:10:58,754 INFO
    cfg.MODEL.DEPTH_LOSS_HEAD.LOSS_TYPE = edict()
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DEPTH_LOSS_HEAD.LOSS_TYPE.ce: 1.0
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DEPTH_LOSS_HEAD.WEIGHTS: [1.0]
    2022-03-24 22:10:58,754 INFO
    cfg.MODEL.POST_PROCESSING = edict()
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.SCORE_THRESH: 0.1
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.OUTPUT_RAW_SCORE: False
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: kitti
    2022-03-24 22:10:58,754 INFO
    cfg.MODEL.POST_PROCESSING.NMS_CONFIG = edict()
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.MULTI_CLASSES_NMS: True
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_TYPE: nms_gpu
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_THRESH: 0.25
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_PRE_MAXSIZE: 4096
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_POST_MAXSIZE: 500
    2022-03-24 22:10:58,754 INFO
    cfg.OPTIMIZATION = edict()
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 1
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 60
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.OPTIMIZER: adamw
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.LR: 0.001
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.MOMENTUM: 0.9
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [50]
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1
    2022-03-24 22:10:58,755 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07
    2022-03-24 22:10:58,755 INFO cfg.OPTIMIZATION.LR_WARMUP: True
    2022-03-24 22:10:58,755 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1
    2022-03-24 22:10:58,755 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
    2022-03-24 22:10:58,755 INFO cfg.TAG: liga.3d-and-bev
    2022-03-24 22:10:58,755 INFO cfg.EXP_GROUP_PATH: configs_stereo_kitti_models
    2022-03-24 22:10:58,775 INFO boxes_gt_in_cam2_view False
    2022-03-24 22:10:58,775 INFO Loading KITTI dataset
    2022-03-24 22:10:58,874 INFO Total samples for KITTI dataset: 3769
    2022-03-24 22:10:58,874 INFO **********************Creating model **********************
    2022-03-24 22:10:58,874 INFO **********************MODEL name is: {'NAME': 'stereo_LIGA', 'LIDAR_MODEL': {'NAME': 'SECONDNet', 'RETURN_BATCH_DICT': True, 'PRETRAINED_MODEL': './ckpt/second_s4_hg.iouloss.ep78.backbone-no-final-bnrelu.input-only-xyz.default-lr-policy-with-wd-decay-78ep.pth', 'VFE': {'NAME': 'MeanVFE'}, 'BACKBONE_3D': {'NAME': 'VoxelBackBone4xNoFinalBnReLU'}, 'MAP_TO_BEV': {'NAME': 'HeightCompression', 'NUM_BEV_FEATURES': 160}, 'BACKBONE_2D': {'NAME': 'HgBEVBackbone', 'num_channels': 64, 'GN': False}}, 'BACKBONE_3D': {'NAME': 'LigaBackbone', 'maxdisp': 288, 'downsample_disp': 4, 'GN': True, 'img_feature_attentionbydisp': True, 'voxel_attentionbydisp': False, 'cat_img_feature': True, 'num_3dconvs': 1, 'feature_backbone': {'type': 'ResNet', 'depth': 34, 'num_stages': 4, 'out_indices': [0, 1, 2, 3], 'frozen_stages': -1, 'norm_cfg': {'type': 'BN', 'requires_grad': True}, 'norm_eval': False, 'style': 'pytorch', 'with_max_pool': False, 'deep_stem': False, 'block_with_final_relu': False, 'base_channels': 64, 'strides': [1, 2, 1, 1], 'dilations': [1, 1, 2, 4], 'num_channels_factor': [1, 2, 2, 2]}, 'feature_backbone_pretrained': 'torchvision://resnet34', 'feature_neck': {'GN': True, 'in_dims': [3, 64, 128, 128, 128], 'start_level': 2, 'stereo_dim': [32, 32], 'with_upconv': True, 'cat_img_feature': True, 'sem_dim': [128, 32]}, 'sem_neck': {'type': 'FPN', 'in_channels': [32], 'out_channels': 64, 'start_level': 0, 'add_extra_convs': 'on_output', 'num_outs': 5}, 'cost_volume': [{'type': 'concat', 'downsample': 4}], 'cv_dim': 32, 'rpn3d_dim': 32, 'downsampled_depth_offset': 0.5, 'use_stereo_out_type': 'feature', 'num_hg': 1}, 'DENSE_HEAD_2D': {'NAME': 'MMDet2DHead', 'use_3d_center': True, 'cfg': {'type': 'ATSSAdvHead', 'reg_class_agnostic': False, 'seperate_extra_reg_branch': False, 'num_classes': 3, 'in_channels': 64, 'stacked_convs': 4, 'feat_channels': 64, 'anchor_generator': {'type': 'AnchorGenerator', 'ratios': [1.0], 'octave_base_scale': 16, 'scales_per_octave': 1, 'strides': [4, 8, 16, 32, 64]}, 'num_extra_reg_channel': 0, 'bbox_coder': {'type': 'DeltaXYWHBBoxCoder', 'target_means': [0.0, 0.0, 0.0, 0.0], 'target_stds': [0.1, 0.1, 0.2, 0.2]}, 'loss_cls': {'type': 'FocalLoss', 'use_sigmoid': True, 'gamma': 2.0, 'alpha': 0.25, 'loss_weight': 1.0}, 'loss_bbox': {'type': 'GIoULoss', 'loss_weight': 2.0}, 'loss_centerness': {'type': 'CrossEntropyLoss', 'use_sigmoid': True, 'loss_weight': 1.0}, 'train_cfg': {'assigner': {'type': 'ATSS3DCenterAssigner', 'topk': 9}, 'allowed_border': -1, 'pos_weight': -1, 'append_3d_centers': True, 'debug': False}, 'test_cfg': {'nms_pre': 1000, 'min_bbox_size': 0, 'score_thr': 0.05, 'nms': {'type': 'nms', 'iou_threshold': 0.6}, 'max_per_img': 100}}}, 'MAP_TO_BEV': {'NAME': 'HeightCompression', 'NUM_BEV_FEATURES': 160, 'SPARSE_INPUT': False}, 'BACKBONE_2D': {'NAME': 'HgBEVBackbone', 'num_channels': 64, 'GN': True}, 'DENSE_HEAD': {'NAME': 'DetHead', 'NUM_CONVS': 2, 'GN': True, 'CLASS_AGNOSTIC': False, 'USE_DIRECTION_CLASSIFIER': True, 'DIR_OFFSET': 0.78539, 'DIR_LIMIT_OFFSET': 0.0, 'NUM_DIR_BINS': 2, 'CLAMP_VALUE': 10.0, 'xyz_for_angles': True, 'hwl_for_angles': True, 'do_feature_imitation': True, 'imitation_cfg': [{'lidar_feature_layer': 'spatial_features_2d', 'stereo_feature_layer': 'spatial_features_2d', 'normalize': 'cw_scale', 'layer': 'conv2d', 'channel': 64, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}, {'lidar_feature_layer': 'volume_features', 'stereo_feature_layer': 'volume_features', 'normalize': 'cw_scale', 'layer': 'conv3d', 'channel': 32, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}], 'ANCHOR_GENERATOR_CONFIG': [{'class_name': 'Car', 'anchor_sizes': [[3.9, 1.6, 1.56]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-1.78], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.6, 'unmatched_threshold': 0.45}, {'class_name': 'Pedestrian', 'anchor_sizes': [[0.8, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}, {'class_name': 'Cyclist', 'anchor_sizes': [[1.76, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}], 'TARGET_ASSIGNER_CONFIG': {'NAME': 'AxisAlignedTargetAssigner', 'POS_FRACTION': -1.0, 'SAMPLE_SIZE': 512, 'NORM_BY_NUM_EXAMPLES': False, 'MATCH_HEIGHT': False, 'BOX_CODER': 'ResidualCoder', 'BOX_CODER_CONFIG': {'div_by_diagonal': True, 'use_corners': False, 'use_tanh': False}}, 'LOSS_CONFIG': {'REG_LOSS_TYPE': 'WeightedSmoothL1Loss', 'IOU_LOSS_TYPE': 'IOU3dLoss', 'IMITATION_LOSS_TYPE': 'WeightedL2WithSigmaLoss', 'LOSS_WEIGHTS': {'cls_weight': 1.0, 'loc_weight': 0.5, 'dir_weight': 0.2, 'iou_weight': 1.0, 'imitation_weight': 1.0, 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]}}}, 'DEPTH_LOSS_HEAD': {'LOSS_TYPE': {'ce': 1.0}, 'WEIGHTS': [1.0]}, 'POST_PROCESSING': {'RECALL_THRESH_LIST': [0.3, 0.5, 0.7], 'SCORE_THRESH': 0.1, 'OUTPUT_RAW_SCORE': False, 'EVAL_METRIC': 'kitti', 'NMS_CONFIG': {'MULTI_CLASSES_NMS': True, 'NMS_TYPE': 'nms_gpu', 'NMS_THRESH': 0.25, 'NMS_PRE_MAXSIZE': 4096, 'NMS_POST_MAXSIZE': 500}}} **********************
    2022-03-24 22:10:58,884 INFO ==> Loading parameters from checkpoint ./ckpt/second_s4_hg.iouloss.ep78.backbone-no-final-bnrelu.input-only-xyz.default-lr-policy-with-wd-decay-78ep.pth to CPU
    2022-03-24 22:10:58,897 INFO ==> Checkpoint trained from version: liga+0.1.0+7aa7b92+py60b444b
    2022-03-24 22:10:58,948 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.0.weight: torch.Size([64, 64, 3, 3])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.1.weight: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.1.bias: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.1.running_mean: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.1.running_var: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.1.num_batches_tracked: torch.Size([])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.0.weight: torch.Size([64, 64, 3, 3])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.1.weight: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.1.bias: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.1.running_mean: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.1.running_var: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.1.num_batches_tracked: torch.Size([])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.0.weight: torch.Size([64, 64, 3, 3])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.1.weight: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.1.bias: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.1.running_mean: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.1.running_var: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.1.num_batches_tracked: torch.Size([])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.0.weight: torch.Size([64, 64, 3, 3])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.1.weight: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.1.bias: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.1.running_mean: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.1.running_var: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.1.num_batches_tracked: torch.Size([])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.conv_cls.weight: torch.Size([18, 64, 3, 3])
    2022-03-24 22:10:58,950 INFO Not Loaded weight dense_head.conv_cls.bias: torch.Size([18])
    2022-03-24 22:10:58,950 INFO Not Loaded weight dense_head.conv_box.weight: torch.Size([42, 64, 3, 3])
    2022-03-24 22:10:58,950 INFO Not Loaded weight dense_head.conv_box.bias: torch.Size([42])
    2022-03-24 22:10:58,950 INFO Not Loaded weight dense_head.conv_dir_cls.weight: torch.Size([12, 64, 1, 1])
    2022-03-24 22:10:58,950 INFO Not Loaded weight dense_head.conv_dir_cls.bias: torch.Size([12])
    2022-03-24 22:10:58,950 INFO ==> Done (loaded 110/110)
    stereo volume depth range: 2.0 -> 59.599998474121094, interval 0.19999999470180935
    2022-03-24 22:10:59,105 - mmdet - WARNING - The model and loaded state dict do not match exactly

size mismatch for layer3.0.conv1.weight: copying a param with shape torch.Size([256, 128, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.0.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.0.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.0.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.0.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.0.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.0.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.0.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.0.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.0.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.1.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.1.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.1.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.1.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.1.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.1.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.1.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.1.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.1.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.1.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.2.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.2.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.2.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.2.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.2.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.2.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.2.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.2.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.2.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.2.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.3.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.3.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.3.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.3.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.3.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.3.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.3.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.3.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.3.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.3.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.4.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.4.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.4.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.4.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.4.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.4.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.4.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.4.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.4.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.4.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.5.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.5.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.5.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.5.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.5.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.5.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer3.5.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.5.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.5.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer3.5.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.0.conv1.weight: copying a param with shape torch.Size([512, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer4.0.bn1.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.0.bn1.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.0.bn1.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.0.bn1.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.0.conv2.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer4.0.bn2.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.0.bn2.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.0.bn2.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.0.bn2.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.1.conv1.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer4.1.bn1.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.1.bn1.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.1.bn1.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.1.bn1.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.1.conv2.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer4.1.bn2.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.1.bn2.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.1.bn2.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.1.bn2.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.2.conv1.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer4.2.bn1.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.2.bn1.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.2.bn1.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.2.bn1.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.2.conv2.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]).
size mismatch for layer4.2.bn2.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.2.bn2.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.2.bn2.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
size mismatch for layer4.2.bn2.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]).
unexpected key in source state_dict: fc.weight, fc.bias, layer3.0.downsample.0.weight, layer3.0.downsample.1.running_mean, layer3.0.downsample.1.running_var, layer3.0.downsample.1.weight, layer3.0.downsample.1.bias, layer4.0.downsample.0.weight, layer4.0.downsample.1.running_mean, layer4.0.downsample.1.running_var, layer4.0.downsample.1.weight, layer4.0.downsample.1.bias

2022-03-24 22:10:59,122 INFO ********************** Model create finished **********************
2022-03-24 22:10:59,123 INFO ********************** Load checkpoint **********************
2022-03-24 22:10:59,123 INFO ==> Loading parameters from checkpoint ./ckpt/released.final.liga.3d-and-bev.ep53.pth to CPU
2022-03-24 22:10:59,157 INFO ==> Checkpoint trained from version: liga+0.1.0+7aa7b92+py72af526
2022-03-24 22:11:00,163 INFO ==> Done (loaded 484/484)
2022-03-24 22:11:00,182 INFO ********************** Start evaluation **********************
2022-03-24 22:11:00,182 INFO *************** EPOCH 53 EVALUATION *****************
eval: 0%| | 0/3769 [00:00<?, ?it/s]Traceback (most recent call last):
File "/home/qingwu/anaconda3/envs/liga_cuda111/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/home/qingwu/anaconda3/envs/liga_cuda111/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/home/qingwu/anaconda3/envs/liga_cuda111/lib/python3.7/site-packages/torch/distributed/launch.py", line 260, in
main()
File "/home/qingwu/anaconda3/envs/liga_cuda111/lib/python3.7/site-packages/torch/distributed/launch.py", line 256, in main
cmd=cmd)
subprocess.CalledProcessError: Command '['/home/qingwu/anaconda3/envs/liga_cuda111/bin/python', '-u', 'tools/test.py', '--local_rank=0', '--launcher', 'pytorch', '--save_to_file', '--cfg_file', './configs/stereo/kitti_models/liga.3d-and-bev.yaml', '--ckpt', './ckpt/released.final.liga.3d-and-bev.ep53.pth']' died with <Signals.SIGSEGV: 11>.

Any ideas? Thanks in advance.

@Cheren15
Copy link

Same fault with CUDA11.1 and pytorch==1.8.0

@SibylGao
Copy link

Hi,

I faced this problem too. My env is: ubuntu=20.0.6, python=3.7, cuda=11.1, pytorch=1.7.1. My GPU is RTX 8000.

Command I run was: ./scripts/dist_test_ckpt.sh 1 ./configs/stereo/kitti_models/liga.3d-and-bev.yaml ./ckpt/released.final.liga.3d-and-bev.ep53.pth

Pip list is as follows: Package Version Location

addict 2.4.0 certifi 2021.10.8 cycler 0.11.0 Cython 0.29.28 easydict 1.9 fire 0.4.0 fonttools 4.28.2 imageio 2.16.1 kiwisolver 1.3.2 liga 0.1.0+aee3731 /home/qingwu/LIGA-Stereo llvmlite 0.38.0 matplotlib 3.5.0 mkl-fft 1.3.1 mkl-random 1.2.2 mkl-service 2.4.0 mmcv-full 1.2.0 mmdet 2.6.0 /home/qingwu/LIGA-Stereo/mmdetection_kitti mmpycocotools 12.0.3 networkx 2.6.3 numba 0.55.1 numpy 1.21.5 opencv-python 4.5.5.64 packaging 21.3 Pillow 9.0.1 pip 21.2.2 protobuf 3.19.4 pycocotools 2.0 pyparsing 3.0.6 python-dateutil 2.8.2 PyWavelets 1.3.0 PyYAML 5.4.1 scikit-image 0.19.2 scipy 1.7.3 setuptools 58.0.4 setuptools-scm 6.3.2 six 1.16.0 spconv 1.2.1 tensorboardX 2.5 termcolor 1.1.0 terminaltables 3.1.10 tifffile 2021.11.2 tomli 1.2.2 torch 1.7.1 torchaudio 0.7.0a0+a853dff torchvision 0.8.2 tqdm 4.63.1 typing_extensions 4.1.1 wheel 0.37.1 yapf 0.32.0

The error logs are as follows:

  • python -m torch.distributed.launch --nproc_per_node=1 tools/test.py --launcher pytorch --save_to_file --cfg_file ./configs/stereo/kitti_models/liga.3d-and-bev.yaml --ckpt ./ckpt/released.final.liga.3d-and-bev.ep53.pth
    2022-03-24 22:10:58,747 INFO Start logging
    2022-03-24 22:10:58,747 INFO CUDA_VISIBLE_DEVICES=ALL
    2022-03-24 22:10:58,747 INFO eval output dir: ckpt/released.final.liga.3d-and-bev.ep53.pth.eval/eval/epoch_53/val/default
    2022-03-24 22:10:58,747 INFO total_batch_size: 1
    2022-03-24 22:10:58,747 INFO cfg_file ./configs/stereo/kitti_models/liga.3d-and-bev.yaml
    2022-03-24 22:10:58,747 INFO batch_size 1
    2022-03-24 22:10:58,747 INFO workers 2
    2022-03-24 22:10:58,747 INFO exp_name None
    2022-03-24 22:10:58,747 INFO eval_tag default
    2022-03-24 22:10:58,747 INFO max_waiting_mins 30
    2022-03-24 22:10:58,747 INFO save_to_file True
    2022-03-24 22:10:58,747 INFO ckpt ./ckpt/released.final.liga.3d-and-bev.ep53.pth
    2022-03-24 22:10:58,747 INFO ckpt_id None
    2022-03-24 22:10:58,747 INFO start_epoch 0
    2022-03-24 22:10:58,747 INFO launcher pytorch
    2022-03-24 22:10:58,747 INFO tcp_port 18888
    2022-03-24 22:10:58,747 INFO local_rank 0
    2022-03-24 22:10:58,747 INFO set_cfgs None
    2022-03-24 22:10:58,747 INFO trainval False
    2022-03-24 22:10:58,748 INFO imitation 2d
    2022-03-24 22:10:58,748 INFO cfg.ROOT_DIR: /home/qingwu/LIGA-Stereo
    2022-03-24 22:10:58,748 INFO cfg.LOCAL_RANK: 0
    2022-03-24 22:10:58,748 INFO cfg.CLASS_NAMES: ['Car', 'Pedestrian', 'Cyclist']
    2022-03-24 22:10:58,748 INFO
    cfg.DATA_CONFIG = edict()
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.DATASET: StereoKittiDataset
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.DATA_PATH: ./data/kitti
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.FLIP: True
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.FORCE_FLIP: False
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.POINT_CLOUD_RANGE: [2, -30.4, -3, 59.6, 30.4, 1]
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.VOXEL_SIZE: [0.05, 0.05, 0.1]
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.STEREO_VOXEL_SIZE: [0.2, 0.2, 0.2]
    2022-03-24 22:10:58,748 INFO
    cfg.DATA_CONFIG.DATA_SPLIT = edict()
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.DATA_SPLIT.train: train
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.DATA_SPLIT.test: val
    2022-03-24 22:10:58,748 INFO
    cfg.DATA_CONFIG.INFO_PATH = edict()
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.INFO_PATH.train: ['kitti_infos_train.pkl']
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.INFO_PATH.test: ['kitti_infos_val.pkl']
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.USE_VAN: True
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.USE_PERSON_SITTING: True
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.FOV_POINTS_ONLY: True
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.BOXES_GT_IN_CAM2_VIEW: False
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.GENERATE_CORNER_HEATMAP: False
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.CAT_REFLECT_DIM: False
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.TRAIN_DATA_AUGMENTOR: [{'NAME': 'random_crop', 'MIN_REL_X': 0, 'MAX_REL_X': 0, 'MIN_REL_Y': 1.0, 'MAX_REL_Y': 1.0, 'MAX_CROP_H': 320, 'MAX_CROP_W': 1280}, {'NAME': 'filter_truncated', 'AREA_RATIO_THRESH': None, 'AREA_2D_RATIO_THRESH': None, 'GT_TRUNCATED_THRESH': 0.98}]
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.TEST_DATA_AUGMENTOR: [{'NAME': 'random_crop', 'MIN_REL_X': 0, 'MAX_REL_X': 0, 'MIN_REL_Y': 1.0, 'MAX_REL_Y': 1.0, 'MAX_CROP_H': 320, 'MAX_CROP_W': 1280}]
    2022-03-24 22:10:58,748 INFO
    cfg.DATA_CONFIG.POINT_FEATURE_ENCODING = edict()
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.encoding_type: absolute_coordinates_encoding
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.used_feature_list: ['x', 'y', 'z']
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.POINT_FEATURE_ENCODING.src_feature_list: ['x', 'y', 'z']
    2022-03-24 22:10:58,748 INFO cfg.DATA_CONFIG.DATA_PROCESSOR: [{'NAME': 'mask_points_and_boxes_outside_range', 'REMOVE_OUTSIDE_BOXES': True}, {'NAME': 'transform_points_to_voxels', 'VOXEL_SIZE': [0.05, 0.05, 0.1], 'MAX_POINTS_PER_VOXEL': 5, 'MAX_NUMBER_OF_VOXELS': {'train': 40000, 'test': 40000}}]
    2022-03-24 22:10:58,749 INFO cfg.DATA_CONFIG.BASE_CONFIG: ./configs/stereo/dataset_configs/kitti_dataset_fused.yaml
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.NAME: stereo_LIGA
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.LIDAR_MODEL = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.NAME: SECONDNet
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.RETURN_BATCH_DICT: True
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.PRETRAINED_MODEL: ./ckpt/second_s4_hg.iouloss.ep78.backbone-no-final-bnrelu.input-only-xyz.default-lr-policy-with-wd-decay-78ep.pth
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.LIDAR_MODEL.VFE = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.VFE.NAME: MeanVFE
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.LIDAR_MODEL.BACKBONE_3D = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.BACKBONE_3D.NAME: VoxelBackBone4xNoFinalBnReLU
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.LIDAR_MODEL.MAP_TO_BEV = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.MAP_TO_BEV.NAME: HeightCompression
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.MAP_TO_BEV.NUM_BEV_FEATURES: 160
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.LIDAR_MODEL.BACKBONE_2D = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.BACKBONE_2D.NAME: HgBEVBackbone
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.BACKBONE_2D.num_channels: 64
    2022-03-24 22:10:58,749 INFO cfg.MODEL.LIDAR_MODEL.BACKBONE_2D.GN: False
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.BACKBONE_3D = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.NAME: LigaBackbone
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.maxdisp: 288
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.downsample_disp: 4
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.GN: True
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.img_feature_attentionbydisp: True
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.voxel_attentionbydisp: False
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.cat_img_feature: True
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.num_3dconvs: 1
    2022-03-24 22:10:58,749 INFO
    cfg.MODEL.BACKBONE_3D.feature_backbone = edict()
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.type: ResNet
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.depth: 34
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.num_stages: 4
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.out_indices: [0, 1, 2, 3]
    2022-03-24 22:10:58,749 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.frozen_stages: -1
    2022-03-24 22:10:58,750 INFO
    cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg = edict()
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg.type: BN
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_cfg.requires_grad: True
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.norm_eval: False
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.style: pytorch
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.with_max_pool: False
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.deep_stem: False
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.block_with_final_relu: False
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.base_channels: 64
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.strides: [1, 2, 1, 1]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.dilations: [1, 1, 2, 4]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone.num_channels_factor: [1, 2, 2, 2]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_backbone_pretrained: torchvision://resnet34
    2022-03-24 22:10:58,750 INFO
    cfg.MODEL.BACKBONE_3D.feature_neck = edict()
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.GN: True
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.in_dims: [3, 64, 128, 128, 128]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.start_level: 2
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.stereo_dim: [32, 32]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.with_upconv: True
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.cat_img_feature: True
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.feature_neck.sem_dim: [128, 32]
    2022-03-24 22:10:58,750 INFO
    cfg.MODEL.BACKBONE_3D.sem_neck = edict()
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.type: FPN
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.in_channels: [32]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.out_channels: 64
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.start_level: 0
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.add_extra_convs: on_output
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.sem_neck.num_outs: 5
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.cost_volume: [{'type': 'concat', 'downsample': 4}]
    2022-03-24 22:10:58,750 INFO cfg.MODEL.BACKBONE_3D.cv_dim: 32
    2022-03-24 22:10:58,751 INFO cfg.MODEL.BACKBONE_3D.rpn3d_dim: 32
    2022-03-24 22:10:58,751 INFO cfg.MODEL.BACKBONE_3D.downsampled_depth_offset: 0.5
    2022-03-24 22:10:58,751 INFO cfg.MODEL.BACKBONE_3D.use_stereo_out_type: feature
    2022-03-24 22:10:58,751 INFO cfg.MODEL.BACKBONE_3D.num_hg: 1
    2022-03-24 22:10:58,751 INFO
    cfg.MODEL.DENSE_HEAD_2D = edict()
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.NAME: MMDet2DHead
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.use_3d_center: True
    2022-03-24 22:10:58,751 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg = edict()
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.type: ATSSAdvHead
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.reg_class_agnostic: False
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.seperate_extra_reg_branch: False
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.num_classes: 3
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.in_channels: 64
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.stacked_convs: 4
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.feat_channels: 64
    2022-03-24 22:10:58,751 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator = edict()
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.type: AnchorGenerator
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.ratios: [1.0]
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.octave_base_scale: 16
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.scales_per_octave: 1
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.anchor_generator.strides: [4, 8, 16, 32, 64]
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.num_extra_reg_channel: 0
    2022-03-24 22:10:58,751 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder = edict()
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.type: DeltaXYWHBBoxCoder
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.target_means: [0.0, 0.0, 0.0, 0.0]
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.bbox_coder.target_stds: [0.1, 0.1, 0.2, 0.2]
    2022-03-24 22:10:58,751 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls = edict()
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.type: FocalLoss
    2022-03-24 22:10:58,751 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.use_sigmoid: True
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.gamma: 2.0
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.alpha: 0.25
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_cls.loss_weight: 1.0
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox.type: GIoULoss
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_bbox.loss_weight: 2.0
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.type: CrossEntropyLoss
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.use_sigmoid: True
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.loss_centerness.loss_weight: 1.0
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg = edict()
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner.type: ATSS3DCenterAssigner
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.assigner.topk: 9
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.allowed_border: -1
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.pos_weight: -1
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.append_3d_centers: True
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.train_cfg.debug: False
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms_pre: 1000
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.min_bbox_size: 0
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.score_thr: 0.05
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms.type: nms
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.nms.iou_threshold: 0.6
    2022-03-24 22:10:58,752 INFO cfg.MODEL.DENSE_HEAD_2D.cfg.test_cfg.max_per_img: 100
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.MAP_TO_BEV = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.MAP_TO_BEV.NAME: HeightCompression
    2022-03-24 22:10:58,752 INFO cfg.MODEL.MAP_TO_BEV.NUM_BEV_FEATURES: 160
    2022-03-24 22:10:58,752 INFO cfg.MODEL.MAP_TO_BEV.SPARSE_INPUT: False
    2022-03-24 22:10:58,752 INFO
    cfg.MODEL.BACKBONE_2D = edict()
    2022-03-24 22:10:58,752 INFO cfg.MODEL.BACKBONE_2D.NAME: HgBEVBackbone
    2022-03-24 22:10:58,752 INFO cfg.MODEL.BACKBONE_2D.num_channels: 64
    2022-03-24 22:10:58,753 INFO cfg.MODEL.BACKBONE_2D.GN: True
    2022-03-24 22:10:58,753 INFO
    cfg.MODEL.DENSE_HEAD = edict()
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.NAME: DetHead
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.NUM_CONVS: 2
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.GN: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.CLASS_AGNOSTIC: False
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.USE_DIRECTION_CLASSIFIER: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.DIR_OFFSET: 0.78539
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.DIR_LIMIT_OFFSET: 0.0
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.NUM_DIR_BINS: 2
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.CLAMP_VALUE: 10.0
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.xyz_for_angles: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.hwl_for_angles: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.do_feature_imitation: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.imitation_cfg: [{'lidar_feature_layer': 'spatial_features_2d', 'stereo_feature_layer': 'spatial_features_2d', 'normalize': 'cw_scale', 'layer': 'conv2d', 'channel': 64, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}, {'lidar_feature_layer': 'volume_features', 'stereo_feature_layer': 'volume_features', 'normalize': 'cw_scale', 'layer': 'conv3d', 'channel': 32, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}]
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.ANCHOR_GENERATOR_CONFIG: [{'class_name': 'Car', 'anchor_sizes': [[3.9, 1.6, 1.56]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-1.78], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.6, 'unmatched_threshold': 0.45}, {'class_name': 'Pedestrian', 'anchor_sizes': [[0.8, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}, {'class_name': 'Cyclist', 'anchor_sizes': [[1.76, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}]
    2022-03-24 22:10:58,753 INFO
    cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG = edict()
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NAME: AxisAlignedTargetAssigner
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.POS_FRACTION: -1.0
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.SAMPLE_SIZE: 512
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.NORM_BY_NUM_EXAMPLES: False
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.MATCH_HEIGHT: False
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER: ResidualCoder
    2022-03-24 22:10:58,753 INFO
    cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG = edict()
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.div_by_diagonal: True
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.use_corners: False
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.TARGET_ASSIGNER_CONFIG.BOX_CODER_CONFIG.use_tanh: False
    2022-03-24 22:10:58,753 INFO
    cfg.MODEL.DENSE_HEAD.LOSS_CONFIG = edict()
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.REG_LOSS_TYPE: WeightedSmoothL1Loss
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.IOU_LOSS_TYPE: IOU3dLoss
    2022-03-24 22:10:58,753 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.IMITATION_LOSS_TYPE: WeightedL2WithSigmaLoss
    2022-03-24 22:10:58,753 INFO
    cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS = edict()
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.cls_weight: 1.0
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.loc_weight: 0.5
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.dir_weight: 0.2
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.iou_weight: 1.0
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.imitation_weight: 1.0
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DENSE_HEAD.LOSS_CONFIG.LOSS_WEIGHTS.code_weights: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]
    2022-03-24 22:10:58,754 INFO
    cfg.MODEL.DEPTH_LOSS_HEAD = edict()
    2022-03-24 22:10:58,754 INFO
    cfg.MODEL.DEPTH_LOSS_HEAD.LOSS_TYPE = edict()
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DEPTH_LOSS_HEAD.LOSS_TYPE.ce: 1.0
    2022-03-24 22:10:58,754 INFO cfg.MODEL.DEPTH_LOSS_HEAD.WEIGHTS: [1.0]
    2022-03-24 22:10:58,754 INFO
    cfg.MODEL.POST_PROCESSING = edict()
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.RECALL_THRESH_LIST: [0.3, 0.5, 0.7]
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.SCORE_THRESH: 0.1
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.OUTPUT_RAW_SCORE: False
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.EVAL_METRIC: kitti
    2022-03-24 22:10:58,754 INFO
    cfg.MODEL.POST_PROCESSING.NMS_CONFIG = edict()
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.MULTI_CLASSES_NMS: True
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_TYPE: nms_gpu
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_THRESH: 0.25
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_PRE_MAXSIZE: 4096
    2022-03-24 22:10:58,754 INFO cfg.MODEL.POST_PROCESSING.NMS_CONFIG.NMS_POST_MAXSIZE: 500
    2022-03-24 22:10:58,754 INFO
    cfg.OPTIMIZATION = edict()
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.BATCH_SIZE_PER_GPU: 1
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.NUM_EPOCHS: 60
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.OPTIMIZER: adamw
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.LR: 0.001
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.WEIGHT_DECAY: 0.0001
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.MOMENTUM: 0.9
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.DIV_FACTOR: 10
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.DECAY_STEP_LIST: [50]
    2022-03-24 22:10:58,754 INFO cfg.OPTIMIZATION.LR_DECAY: 0.1
    2022-03-24 22:10:58,755 INFO cfg.OPTIMIZATION.LR_CLIP: 1e-07
    2022-03-24 22:10:58,755 INFO cfg.OPTIMIZATION.LR_WARMUP: True
    2022-03-24 22:10:58,755 INFO cfg.OPTIMIZATION.WARMUP_EPOCH: 1
    2022-03-24 22:10:58,755 INFO cfg.OPTIMIZATION.GRAD_NORM_CLIP: 10
    2022-03-24 22:10:58,755 INFO cfg.TAG: liga.3d-and-bev
    2022-03-24 22:10:58,755 INFO cfg.EXP_GROUP_PATH: configs_stereo_kitti_models
    2022-03-24 22:10:58,775 INFO boxes_gt_in_cam2_view False
    2022-03-24 22:10:58,775 INFO Loading KITTI dataset
    2022-03-24 22:10:58,874 INFO Total samples for KITTI dataset: 3769
    2022-03-24 22:10:58,874 INFO **********************Creating model **********************
    2022-03-24 22:10:58,874 INFO **********************MODEL name is: {'NAME': 'stereo_LIGA', 'LIDAR_MODEL': {'NAME': 'SECONDNet', 'RETURN_BATCH_DICT': True, 'PRETRAINED_MODEL': './ckpt/second_s4_hg.iouloss.ep78.backbone-no-final-bnrelu.input-only-xyz.default-lr-policy-with-wd-decay-78ep.pth', 'VFE': {'NAME': 'MeanVFE'}, 'BACKBONE_3D': {'NAME': 'VoxelBackBone4xNoFinalBnReLU'}, 'MAP_TO_BEV': {'NAME': 'HeightCompression', 'NUM_BEV_FEATURES': 160}, 'BACKBONE_2D': {'NAME': 'HgBEVBackbone', 'num_channels': 64, 'GN': False}}, 'BACKBONE_3D': {'NAME': 'LigaBackbone', 'maxdisp': 288, 'downsample_disp': 4, 'GN': True, 'img_feature_attentionbydisp': True, 'voxel_attentionbydisp': False, 'cat_img_feature': True, 'num_3dconvs': 1, 'feature_backbone': {'type': 'ResNet', 'depth': 34, 'num_stages': 4, 'out_indices': [0, 1, 2, 3], 'frozen_stages': -1, 'norm_cfg': {'type': 'BN', 'requires_grad': True}, 'norm_eval': False, 'style': 'pytorch', 'with_max_pool': False, 'deep_stem': False, 'block_with_final_relu': False, 'base_channels': 64, 'strides': [1, 2, 1, 1], 'dilations': [1, 1, 2, 4], 'num_channels_factor': [1, 2, 2, 2]}, 'feature_backbone_pretrained': 'torchvision://resnet34', 'feature_neck': {'GN': True, 'in_dims': [3, 64, 128, 128, 128], 'start_level': 2, 'stereo_dim': [32, 32], 'with_upconv': True, 'cat_img_feature': True, 'sem_dim': [128, 32]}, 'sem_neck': {'type': 'FPN', 'in_channels': [32], 'out_channels': 64, 'start_level': 0, 'add_extra_convs': 'on_output', 'num_outs': 5}, 'cost_volume': [{'type': 'concat', 'downsample': 4}], 'cv_dim': 32, 'rpn3d_dim': 32, 'downsampled_depth_offset': 0.5, 'use_stereo_out_type': 'feature', 'num_hg': 1}, 'DENSE_HEAD_2D': {'NAME': 'MMDet2DHead', 'use_3d_center': True, 'cfg': {'type': 'ATSSAdvHead', 'reg_class_agnostic': False, 'seperate_extra_reg_branch': False, 'num_classes': 3, 'in_channels': 64, 'stacked_convs': 4, 'feat_channels': 64, 'anchor_generator': {'type': 'AnchorGenerator', 'ratios': [1.0], 'octave_base_scale': 16, 'scales_per_octave': 1, 'strides': [4, 8, 16, 32, 64]}, 'num_extra_reg_channel': 0, 'bbox_coder': {'type': 'DeltaXYWHBBoxCoder', 'target_means': [0.0, 0.0, 0.0, 0.0], 'target_stds': [0.1, 0.1, 0.2, 0.2]}, 'loss_cls': {'type': 'FocalLoss', 'use_sigmoid': True, 'gamma': 2.0, 'alpha': 0.25, 'loss_weight': 1.0}, 'loss_bbox': {'type': 'GIoULoss', 'loss_weight': 2.0}, 'loss_centerness': {'type': 'CrossEntropyLoss', 'use_sigmoid': True, 'loss_weight': 1.0}, 'train_cfg': {'assigner': {'type': 'ATSS3DCenterAssigner', 'topk': 9}, 'allowed_border': -1, 'pos_weight': -1, 'append_3d_centers': True, 'debug': False}, 'test_cfg': {'nms_pre': 1000, 'min_bbox_size': 0, 'score_thr': 0.05, 'nms': {'type': 'nms', 'iou_threshold': 0.6}, 'max_per_img': 100}}}, 'MAP_TO_BEV': {'NAME': 'HeightCompression', 'NUM_BEV_FEATURES': 160, 'SPARSE_INPUT': False}, 'BACKBONE_2D': {'NAME': 'HgBEVBackbone', 'num_channels': 64, 'GN': True}, 'DENSE_HEAD': {'NAME': 'DetHead', 'NUM_CONVS': 2, 'GN': True, 'CLASS_AGNOSTIC': False, 'USE_DIRECTION_CLASSIFIER': True, 'DIR_OFFSET': 0.78539, 'DIR_LIMIT_OFFSET': 0.0, 'NUM_DIR_BINS': 2, 'CLAMP_VALUE': 10.0, 'xyz_for_angles': True, 'hwl_for_angles': True, 'do_feature_imitation': True, 'imitation_cfg': [{'lidar_feature_layer': 'spatial_features_2d', 'stereo_feature_layer': 'spatial_features_2d', 'normalize': 'cw_scale', 'layer': 'conv2d', 'channel': 64, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}, {'lidar_feature_layer': 'volume_features', 'stereo_feature_layer': 'volume_features', 'normalize': 'cw_scale', 'layer': 'conv3d', 'channel': 32, 'ksize': 1, 'use_relu': False, 'mode': 'inbox'}], 'ANCHOR_GENERATOR_CONFIG': [{'class_name': 'Car', 'anchor_sizes': [[3.9, 1.6, 1.56]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-1.78], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.6, 'unmatched_threshold': 0.45}, {'class_name': 'Pedestrian', 'anchor_sizes': [[0.8, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}, {'class_name': 'Cyclist', 'anchor_sizes': [[1.76, 0.6, 1.73]], 'anchor_rotations': [0, 1.57], 'anchor_bottom_heights': [-0.6], 'align_center': False, 'feature_map_stride': 1, 'matched_threshold': 0.5, 'unmatched_threshold': 0.35}], 'TARGET_ASSIGNER_CONFIG': {'NAME': 'AxisAlignedTargetAssigner', 'POS_FRACTION': -1.0, 'SAMPLE_SIZE': 512, 'NORM_BY_NUM_EXAMPLES': False, 'MATCH_HEIGHT': False, 'BOX_CODER': 'ResidualCoder', 'BOX_CODER_CONFIG': {'div_by_diagonal': True, 'use_corners': False, 'use_tanh': False}}, 'LOSS_CONFIG': {'REG_LOSS_TYPE': 'WeightedSmoothL1Loss', 'IOU_LOSS_TYPE': 'IOU3dLoss', 'IMITATION_LOSS_TYPE': 'WeightedL2WithSigmaLoss', 'LOSS_WEIGHTS': {'cls_weight': 1.0, 'loc_weight': 0.5, 'dir_weight': 0.2, 'iou_weight': 1.0, 'imitation_weight': 1.0, 'code_weights': [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0]}}}, 'DEPTH_LOSS_HEAD': {'LOSS_TYPE': {'ce': 1.0}, 'WEIGHTS': [1.0]}, 'POST_PROCESSING': {'RECALL_THRESH_LIST': [0.3, 0.5, 0.7], 'SCORE_THRESH': 0.1, 'OUTPUT_RAW_SCORE': False, 'EVAL_METRIC': 'kitti', 'NMS_CONFIG': {'MULTI_CLASSES_NMS': True, 'NMS_TYPE': 'nms_gpu', 'NMS_THRESH': 0.25, 'NMS_PRE_MAXSIZE': 4096, 'NMS_POST_MAXSIZE': 500}}} **********************
    2022-03-24 22:10:58,884 INFO ==> Loading parameters from checkpoint ./ckpt/second_s4_hg.iouloss.ep78.backbone-no-final-bnrelu.input-only-xyz.default-lr-policy-with-wd-decay-78ep.pth to CPU
    2022-03-24 22:10:58,897 INFO ==> Checkpoint trained from version: liga+0.1.0+7aa7b92+py60b444b
    2022-03-24 22:10:58,948 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.0.weight: torch.Size([64, 64, 3, 3])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.1.weight: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.1.bias: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.1.running_mean: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.1.running_var: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.0.0.1.num_batches_tracked: torch.Size([])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.0.weight: torch.Size([64, 64, 3, 3])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.1.weight: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.1.bias: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.1.running_mean: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.1.running_var: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_cls_convs.1.0.1.num_batches_tracked: torch.Size([])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.0.weight: torch.Size([64, 64, 3, 3])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.1.weight: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.1.bias: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.1.running_mean: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.1.running_var: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.0.0.1.num_batches_tracked: torch.Size([])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.0.weight: torch.Size([64, 64, 3, 3])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.1.weight: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.1.bias: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.1.running_mean: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.1.running_var: torch.Size([64])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.rpn3d_bbox_convs.1.0.1.num_batches_tracked: torch.Size([])
    2022-03-24 22:10:58,949 INFO Not Loaded weight dense_head.conv_cls.weight: torch.Size([18, 64, 3, 3])
    2022-03-24 22:10:58,950 INFO Not Loaded weight dense_head.conv_cls.bias: torch.Size([18])
    2022-03-24 22:10:58,950 INFO Not Loaded weight dense_head.conv_box.weight: torch.Size([42, 64, 3, 3])
    2022-03-24 22:10:58,950 INFO Not Loaded weight dense_head.conv_box.bias: torch.Size([42])
    2022-03-24 22:10:58,950 INFO Not Loaded weight dense_head.conv_dir_cls.weight: torch.Size([12, 64, 1, 1])
    2022-03-24 22:10:58,950 INFO Not Loaded weight dense_head.conv_dir_cls.bias: torch.Size([12])
    2022-03-24 22:10:58,950 INFO ==> Done (loaded 110/110)
    stereo volume depth range: 2.0 -> 59.599998474121094, interval 0.19999999470180935
    2022-03-24 22:10:59,105 - mmdet - WARNING - The model and loaded state dict do not match exactly

size mismatch for layer3.0.conv1.weight: copying a param with shape torch.Size([256, 128, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.0.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.0.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.0.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.0.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.0.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.0.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.0.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.0.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.0.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.1.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.1.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.1.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.1.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.1.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.1.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.1.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.1.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.1.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.1.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.2.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.2.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.2.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.2.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.2.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.2.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.2.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.2.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.2.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.2.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.3.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.3.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.3.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.3.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.3.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.3.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.3.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.3.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.3.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.3.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.4.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.4.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.4.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.4.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.4.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.4.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.4.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.4.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.4.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.4.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.5.conv1.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.5.bn1.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.5.bn1.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.5.bn1.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.5.bn1.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.5.conv2.weight: copying a param with shape torch.Size([256, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer3.5.bn2.weight: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.5.bn2.bias: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.5.bn2.running_mean: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer3.5.bn2.running_var: copying a param with shape torch.Size([256]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.0.conv1.weight: copying a param with shape torch.Size([512, 256, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer4.0.bn1.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.0.bn1.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.0.bn1.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.0.bn1.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.0.conv2.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer4.0.bn2.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.0.bn2.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.0.bn2.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.0.bn2.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.1.conv1.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer4.1.bn1.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.1.bn1.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.1.bn1.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.1.bn1.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.1.conv2.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer4.1.bn2.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.1.bn2.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.1.bn2.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.1.bn2.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.2.conv1.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer4.2.bn1.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.2.bn1.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.2.bn1.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.2.bn1.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.2.conv2.weight: copying a param with shape torch.Size([512, 512, 3, 3]) from checkpoint, the shape in current model is torch.Size([128, 128, 3, 3]). size mismatch for layer4.2.bn2.weight: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.2.bn2.bias: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.2.bn2.running_mean: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). size mismatch for layer4.2.bn2.running_var: copying a param with shape torch.Size([512]) from checkpoint, the shape in current model is torch.Size([128]). unexpected key in source state_dict: fc.weight, fc.bias, layer3.0.downsample.0.weight, layer3.0.downsample.1.running_mean, layer3.0.downsample.1.running_var, layer3.0.downsample.1.weight, layer3.0.downsample.1.bias, layer4.0.downsample.0.weight, layer4.0.downsample.1.running_mean, layer4.0.downsample.1.running_var, layer4.0.downsample.1.weight, layer4.0.downsample.1.bias

2022-03-24 22:10:59,122 INFO ********************** Model create finished ********************** 2022-03-24 22:10:59,123 INFO ********************** Load checkpoint ********************** 2022-03-24 22:10:59,123 INFO ==> Loading parameters from checkpoint ./ckpt/released.final.liga.3d-and-bev.ep53.pth to CPU 2022-03-24 22:10:59,157 INFO ==> Checkpoint trained from version: liga+0.1.0+7aa7b92+py72af526 2022-03-24 22:11:00,163 INFO ==> Done (loaded 484/484) 2022-03-24 22:11:00,182 INFO ********************** Start evaluation ********************** 2022-03-24 22:11:00,182 INFO *************** EPOCH 53 EVALUATION ***************** eval: 0%| | 0/3769 [00:00<?, ?it/s]Traceback (most recent call last): File "/home/qingwu/anaconda3/envs/liga_cuda111/lib/python3.7/runpy.py", line 193, in _run_module_as_main "main", mod_spec) File "/home/qingwu/anaconda3/envs/liga_cuda111/lib/python3.7/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/qingwu/anaconda3/envs/liga_cuda111/lib/python3.7/site-packages/torch/distributed/launch.py", line 260, in main() File "/home/qingwu/anaconda3/envs/liga_cuda111/lib/python3.7/site-packages/torch/distributed/launch.py", line 256, in main cmd=cmd) subprocess.CalledProcessError: Command '['/home/qingwu/anaconda3/envs/liga_cuda111/bin/python', '-u', 'tools/test.py', '--local_rank=0', '--launcher', 'pytorch', '--save_to_file', '--cfg_file', './configs/stereo/kitti_models/liga.3d-and-bev.yaml', '--ckpt', './ckpt/released.final.liga.3d-and-bev.ep53.pth']' died with <Signals.SIGSEGV: 11>.

Any ideas? Thanks in advance.

Hi, have you solved this problem? I meet same error massages.

@SibylGao
Copy link

SibylGao commented Sep 17, 2022

Same problem with nvcc 10.1, nvidia-smi 10.2, pytorch 1.6.0 + cudatoolkit 10.1, mmcvfull 1.2.1, mmdet 2.6.0 and graphic cards Tesla V100s
I've worked on it for few days and still can not solve this problem :(

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

7 participants