-
Notifications
You must be signed in to change notification settings - Fork 35
/
Copy pathdemo.py
175 lines (151 loc) · 7.96 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import os
import cv2
import dlib
from imutils import face_utils
import numpy as np
import torch
from torchvision import transforms
from model import gaze_network
from head_pose import HeadPoseEstimator
trans = transforms.Compose([
transforms.ToPILImage(),
transforms.ToTensor(), # this also convert pixel value from [0,255] to [0,1]
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225]),
])
def estimateHeadPose(landmarks, face_model, camera, distortion, iterate=True):
ret, rvec, tvec = cv2.solvePnP(face_model, landmarks, camera, distortion, flags=cv2.SOLVEPNP_EPNP)
## further optimize
if iterate:
ret, rvec, tvec = cv2.solvePnP(face_model, landmarks, camera, distortion, rvec, tvec, True)
return rvec, tvec
def draw_gaze(image_in, pitchyaw, thickness=2, color=(0, 0, 255)):
"""Draw gaze angle on given image with a given eye positions."""
image_out = image_in
(h, w) = image_in.shape[:2]
length = np.min([h, w]) / 2.0
pos = (int(w / 2.0), int(h / 2.0))
if len(image_out.shape) == 2 or image_out.shape[2] == 1:
image_out = cv2.cvtColor(image_out, cv2.COLOR_GRAY2BGR)
dx = -length * np.sin(pitchyaw[1]) * np.cos(pitchyaw[0])
dy = -length * np.sin(pitchyaw[0])
cv2.arrowedLine(image_out, tuple(np.round(pos).astype(np.int32)),
tuple(np.round([pos[0] + dx, pos[1] + dy]).astype(int)), color,
thickness, cv2.LINE_AA, tipLength=0.2)
return image_out
def normalizeData_face(img, face_model, landmarks, hr, ht, cam):
## normalized camera parameters
focal_norm = 960 # focal length of normalized camera
distance_norm = 600 # normalized distance between eye and camera
roiSize = (224, 224) # size of cropped eye image
## compute estimated 3D positions of the landmarks
ht = ht.reshape((3, 1))
hR = cv2.Rodrigues(hr)[0] # rotation matrix
Fc = np.dot(hR, face_model.T) + ht # rotate and translate the face model
two_eye_center = np.mean(Fc[:, 0:4], axis=1).reshape((3, 1))
nose_center = np.mean(Fc[:, 4:6], axis=1).reshape((3, 1))
# get the face center
face_center = np.mean(np.concatenate((two_eye_center, nose_center), axis=1), axis=1).reshape((3, 1))
## ---------- normalize image ----------
distance = np.linalg.norm(face_center) # actual distance between eye and original camera
z_scale = distance_norm / distance
cam_norm = np.array([ # camera intrinsic parameters of the virtual camera
[focal_norm, 0, roiSize[0] / 2],
[0, focal_norm, roiSize[1] / 2],
[0, 0, 1.0],
])
S = np.array([ # scaling matrix
[1.0, 0.0, 0.0],
[0.0, 1.0, 0.0],
[0.0, 0.0, z_scale],
])
hRx = hR[:, 0]
forward = (face_center / distance).reshape(3)
down = np.cross(forward, hRx)
down /= np.linalg.norm(down)
right = np.cross(down, forward)
right /= np.linalg.norm(right)
R = np.c_[right, down, forward].T # rotation matrix R
W = np.dot(np.dot(cam_norm, S), np.dot(R, np.linalg.inv(cam))) # transformation matrix
img_warped = cv2.warpPerspective(img, W, roiSize) # warp the input image
# head pose after normalization
hR_norm = np.dot(R, hR) # head pose rotation matrix in normalized space
hr_norm = cv2.Rodrigues(hR_norm)[0] # convert rotation matrix to rotation vectors
# normalize the facial landmarks
num_point = landmarks.shape[0]
landmarks_warped = cv2.perspectiveTransform(landmarks, W)
landmarks_warped = landmarks_warped.reshape(num_point, 2)
return img_warped, landmarks_warped
if __name__ == '__main__':
img_file_name = './example/input/cam00.JPG'
print('load input face image: ', img_file_name)
image = cv2.imread(img_file_name)
predictor = dlib.shape_predictor('./modules/shape_predictor_68_face_landmarks.dat')
# face_detector = dlib.cnn_face_detection_model_v1('./modules/mmod_human_face_detector.dat')
face_detector = dlib.get_frontal_face_detector() ## this face detector is not very powerful
detected_faces = face_detector(cv2.cvtColor(image, cv2.COLOR_BGR2RGB), 1) ## convert BGR image to RGB for dlib
if len(detected_faces) == 0:
print('warning: no detected face')
exit(0)
print('detected one face')
shape = predictor(image, detected_faces[0]) ## only use the first detected face (assume that each input image only contains one face)
shape = face_utils.shape_to_np(shape)
landmarks = []
for (x, y) in shape:
landmarks.append((x, y))
landmarks = np.asarray(landmarks)
# load camera information
cam_file_name = './example/input/cam00.xml' # this is camera calibration information file obtained with OpenCV
if not os.path.isfile(cam_file_name):
print('no camera calibration file is found.')
exit(0)
fs = cv2.FileStorage(cam_file_name, cv2.FILE_STORAGE_READ)
camera_matrix = fs.getNode('Camera_Matrix').mat() # camera calibration information is used for data normalization
camera_distortion = fs.getNode('Distortion_Coefficients').mat()
print('estimate head pose')
# load face model
face_model_load = np.loadtxt('face_model.txt') # Generic face model with 3D facial landmarks
landmark_use = [20, 23, 26, 29, 15, 19] # we use eye corners and nose conners
face_model = face_model_load[landmark_use, :]
# estimate the head pose,
## the complex way to get head pose information, eos library is required, probably more accurrated
# landmarks = landmarks.reshape(-1, 2)
# head_pose_estimator = HeadPoseEstimator()
# hr, ht, o_l, o_r, _ = head_pose_estimator(image, landmarks, camera_matrix[cam_id])
## the easy way to get head pose information, fast and simple
facePts = face_model.reshape(6, 1, 3)
landmarks_sub = landmarks[[36, 39, 42, 45, 31, 35], :]
landmarks_sub = landmarks_sub.astype(float) # input to solvePnP function must be float type
landmarks_sub = landmarks_sub.reshape(6, 1, 2) # input to solvePnP requires such shape
hr, ht = estimateHeadPose(landmarks_sub, facePts, camera_matrix, camera_distortion)
# data normalization method
print('data normalization, i.e. crop the face image')
img_normalized, landmarks_normalized = normalizeData_face(image, face_model, landmarks_sub, hr, ht, camera_matrix)
print('load gaze estimator')
model = gaze_network()
model.cuda() # comment this line out if you are not using GPU
pre_trained_model_path = './ckpt/epoch_24_ckpt.pth.tar'
if not os.path.isfile(pre_trained_model_path):
print('the pre-trained gaze estimation model does not exist.')
exit(0)
else:
print('load the pre-trained model: ', pre_trained_model_path)
ckpt = torch.load(pre_trained_model_path)
model.load_state_dict(ckpt['model_state'], strict=True) # load the pre-trained model
model.eval() # change it to the evaluation mode
input_var = img_normalized[:, :, [2, 1, 0]] # from BGR to RGB
input_var = trans(input_var)
input_var = torch.autograd.Variable(input_var.float().cuda())
input_var = input_var.view(1, input_var.size(0), input_var.size(1), input_var.size(2)) # the input must be 4-dimension
pred_gaze = model(input_var) # get the output gaze direction, this is 2D output as pitch and raw rotation
pred_gaze = pred_gaze[0] # here we assume there is only one face inside the image, then the first one is the prediction
pred_gaze_np = pred_gaze.cpu().data.numpy() # convert the pytorch tensor to numpy array
print('prepare the output')
# draw the facial landmarks
landmarks_normalized = landmarks_normalized.astype(int) # landmarks after data normalization
for (x, y) in landmarks_normalized:
cv2.circle(img_normalized, (x, y), 5, (0, 255, 0), -1)
face_patch_gaze = draw_gaze(img_normalized, pred_gaze_np) # draw gaze direction on the normalized face image
output_path = 'example/output/results_gaze.jpg'
print('save output image to: ', output_path)
cv2.imwrite(output_path, face_patch_gaze)