-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathtrain.py
333 lines (307 loc) · 12.2 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Copyright 2017 Xu Chenglin(NTU, Singapore)
# Updated by Chenglin, Dec 2018, Jul 2019
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import os
import sys
import time
from datetime import datetime
import pprint
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
from model.model import Model
from utils.paddedFIFO_batch import paddedFIFO_batch
from utils.read_list import read_list
FLAGS = None
def show_all_variables():
model_vars = tf.trainable_variables()
slim.model_analyzer.analyze_vars(model_vars, print_info=True)
sys.stdout.flush()
def run_one_epoch(sess, coord, model, num_batches, is_eval):
#Train/Eval one epoch of the model on the given data.
loss = 0.0
for batch in xrange(num_batches):
if coord.should_stop():
break
if is_eval:
loss_batch = sess.run(model._loss)
else:
_, loss_batch = sess.run([model._train_op, model._loss])
loss += loss_batch
if (batch+1) % 100 == 0:
if is_eval:
tf.logging.info("BATCH %d: EVAL AVG.LOSS %.4f at %s" % (batch+1, loss/(batch+1), datetime.now()))
else:
lr = sess.run(model._lr)
tf.logging.info("BATCH %d: TRAIN AVG.LOSS %.4f with a learning rate %e at %s" % (batch+1, loss/(batch+1), lr, datetime.now()))
loss /= num_batches
return loss
def train():
tr_tfrecords_list, tr_num_batches = read_list(FLAGS.lists_dir, "tr", FLAGS.batch_size)
val_tfrecords_list, val_num_batches = read_list(FLAGS.lists_dir, "cv", FLAGS.batch_size)
with tf.Graph().as_default():
with tf.device('/cpu:0'):
with tf.name_scope('input'):
cmvn = np.load(FLAGS.inputs_cmvn)
cmvn_aux = np.load(FLAGS.inputs_cmvn.replace('cmvn', 'cmvn_aux'))
tr_inputs, tr_inputs_cmvn, tr_inputs_cmvn_aux, tr_labels, tr_lengths, tr_lengths_aux = paddedFIFO_batch(tr_tfrecords_list, FLAGS.batch_size,
FLAGS.input_size, FLAGS.output_size, cmvn=cmvn, cmvn_aux=cmvn_aux, with_labels=FLAGS.with_labels,
num_enqueuing_threads=FLAGS.num_threads, num_epochs=FLAGS.max_epochs, shuffle=FLAGS.shuffle)
val_inputs, val_inputs_cmvn, val_inputs_cmvn_aux, val_labels, val_lengths, val_lengths_aux = paddedFIFO_batch(val_tfrecords_list, FLAGS.batch_size,
FLAGS.input_size, FLAGS.output_size, cmvn=cmvn, cmvn_aux=cmvn_aux, with_labels=FLAGS.with_labels,
num_enqueuing_threads=FLAGS.num_threads, num_epochs=FLAGS.max_epochs+1, shuffle=False)
with tf.name_scope('model'):
tr_model = Model(FLAGS, tr_inputs, tr_inputs_cmvn, tr_inputs_cmvn_aux, tr_labels, tr_lengths, tr_lengths_aux, infer=False)
tf.get_variable_scope().reuse_variables()
val_model = Model(FLAGS, val_inputs, val_inputs_cmvn, val_inputs_cmvn_aux, val_labels, val_lengths, val_lengths_aux, infer=False)
show_all_variables()
init = tf.group(tf.global_variables_initializer(), tf.local_variables_initializer())
config = tf.ConfigProto()
config.gpu_options.allow_growth = True
config.allow_soft_placement = True
sess = tf.Session(config=config)
sess.run(init)
checkpoint = tf.train.get_checkpoint_state(FLAGS.save_model_dir)
if checkpoint and checkpoint.model_checkpoint_path:
tf.logging.info("Restore last saved model from " + checkpoint.model_checkpoint_path)
tr_model.saver.restore(sess, checkpoint.model_checkpoint_path)
best_model_path = checkpoint.model_checkpoint_path
iter_idx = best_model_path.find('iter')
mark_idx = best_model_path.find('_', iter_idx)
start_iter = int(float(best_model_path[iter_idx+4:mark_idx]))
lr_idx = best_model_path.find('lr')
lr_mark_idx = best_model_path.find('_', lr_idx)
FLAGS.learning_rate = float(best_model_path[lr_idx+2:lr_mark_idx])
cv_idx = best_model_path.find('cv')
cv_restore = float(best_model_path[cv_idx+2:])
resume_training = 1
else:
start_iter = 0
resume_training = 0
coord = tf.train.Coordinator()
threads = tf.train.start_queue_runners(sess=sess, coord=coord)
try:
# Eval the init model to obtain the init loss on the development set before training.
if resume_training:
prev_val_loss = cv_restore
else:
prev_val_loss = run_one_epoch(sess, coord, val_model, val_num_batches, is_eval=True)
tf.logging.info("INIT EVAL AVG.LOSS %.4f at %s" % (prev_val_loss, datetime.now()))
sess.run(tf.assign(tr_model._lr, FLAGS.learning_rate))
for epoch in xrange(start_iter, FLAGS.max_epochs):
start_time = time.time()
# Training for one epoch
tr_loss = run_one_epoch(sess, coord, tr_model, tr_num_batches, is_eval=False)
# Evaluating on the development set using the updated model
val_loss = run_one_epoch(sess, coord, val_model, val_num_batches, is_eval=True)
end_time = time.time()
model_name = "nnet_iter%d_lr%e_tr%.4f_cv%.4f" % (epoch+1, FLAGS.learning_rate, tr_loss, val_loss)
model_path = os.path.join(FLAGS.save_model_dir, model_name)
rel_impr = (prev_val_loss - val_loss) / prev_val_loss
if val_loss < prev_val_loss:
tr_model.saver.save(sess, model_path)
prev_val_loss = val_loss
best_model_path = model_path
tf.logging.info("ITER %d: TRAIN AVG.LOSS %.4f, CROSSVAL AVG.LOSS %.4f, LR %e, %s, %s USED TIME: %.2fs" % (
epoch+1, tr_loss, val_loss, FLAGS.learning_rate, "ACCEPTED", model_name, end_time-start_time))
else:
tf.logging.info("ITER %d: TRAIN AVG.LOSS %.4f, CROSSVAL AVG.LOSS %.4f, LR %e, %s, %s USED TIME: %.2fs" % (
epoch+1, tr_loss, val_loss, FLAGS.learning_rate, "REJECTED", model_name, end_time-start_time))
tr_model.saver.restore(sess, best_model_path)
# Reduce the learning rate when the relative improvement is lower than the threshold
if rel_impr < FLAGS.reduce_lr_threshold:
FLAGS.learning_rate *= FLAGS.lr_reduction_factor
sess.run(tf.assign(tr_model._lr, FLAGS.learning_rate))
# Stop the training when the relative improvement is lower than the threshold
if rel_impr < FLAGS.stop_threshold:
if epoch+1 < FLAGS.min_epochs:
tf.logging.info("Continue to train the model with a minimum epoch of %d" % FLAGS.min_epochs)
continue
else:
tf.logging.info("The relative improvement is lower than the stopping threshold, stop training at a relative improvement of %f" % rel_impr)
break
except Exception, e:
coord.request_stop(e)
finally:
coord.request_stop()
coord.join(threads)
sess.close()
def main(_):
if not os.path.exists(FLAGS.save_model_dir):
os.makedirs(FLAGS.save_model_dir)
train()
if __name__ == "__main__":
tf.logging.set_verbosity(tf.logging.INFO)
parser = argparse.ArgumentParser()
parser.add_argument(
'--lists_dir',
type=str,
default='tmp/',
help="List to show where the data is."
)
parser.add_argument(
'--with_labels',
type=int,
default=1,
help='Whether the clean labels are included in the tfrecords.'
)
parser.add_argument(
'--inputs_cmvn',
type=str,
default='tfrecords/tr_cmvn.npz',
help="The global cmvn to normalize the inputs."
)
parser.add_argument(
'--input_size',
type=int,
default=129,
help="Input feature dimension (default 129 for 8kHz sampling rate)."
)
parser.add_argument(
'--output_size',
type=int,
default=129,
help="Output dimension (mask dimension, default 129 for 8kHz sampling rate)."
)
parser.add_argument(
'--aux_hidden_size',
type=int,
default=512,
help="The dimension of hidden layer in auxillary network."
)
parser.add_argument(
'--aux_output_size',
type=int,
default=30,
help="The dimension of output layer in auxillary network, equals to the number of sub-layers in the adapt layer."
)
parser.add_argument(
'--rnn_size',
type=int,
default=896,
help="Number of units in a rnn layer."
)
parser.add_argument(
'--rnn_num_layers',
type=int,
default=3,
help="Number of rnn layers."
)
parser.add_argument(
'--mask_type',
type=str,
default='relu',
help="Mask avtivation funciton, now only support sigmoid or relu"
)
parser.add_argument(
'--batch_size',
type=int,
default=16,
help="Minibatch size."
)
parser.add_argument(
'--learning_rate',
type=float,
default=0.0005,
help="Initial learning rate."
)
parser.add_argument(
'--min_epochs',
type=int,
default=30,
help="Minimum epochs when training the model."
)
parser.add_argument(
'--max_epochs',
type=int,
default=100,
help="Maximum epochs when training the model."
)
parser.add_argument(
'--lr_reduction_factor',
type=float,
default=0.5,
help="Factor for reducing the learning rate."
)
parser.add_argument(
'--reduce_lr_threshold',
type=float,
default=0.0,
help="Threshold to decide when to reduce the learning rate."
)
parser.add_argument(
'--stop_threshold',
type=float,
default=0.0001,
help="Threshold to decide when to stop training."
)
parser.add_argument(
'--num_threads',
type=int,
default=12,
help='Number of threads for paralleling.'
)
parser.add_argument(
'--save_model_dir',
type=str,
default='exp/model_name',
help="Directory to save the training model in every epoch."
)
parser.add_argument(
'--keep_prob',
type=float,
default=0.7,
help="Keep probability for training with a dropout (default: 1-dropout_rate)."
)
parser.add_argument(
'--max_grad_norm',
type=float,
default=5.0,
help="The max gradient normalization."
)
parser.add_argument(
'--del_factor',
type=float,
default=0.0,
help="weight for delta objective function, if larger than 0, delta objective function is applied."
)
parser.add_argument(
'--acc_factor',
type=float,
default=0.0,
help="weight for acceleration objective function, if larger than 0, delta objective function is applied."
)
parser.add_argument(
'--dynamic_win',
type=int,
default=2,
help="window size of the order in calculation of dynamic objective functions, default is 2."
)
parser.add_argument(
'--mag_factor',
type=float,
default=0.0,
help="weight for static (i.e., magnitude) objective function, if larger than 0, static objective function is applied."
)
parser.add_argument(
'--shuffle',
type=int,
default=0,
help="Whether shuffle data."
)
parser.add_argument(
'--power_num',
type=int,
default=2,
help="The power to calculate the loss, if set to 2, it's squared L2, if set to 1, it's L1."
)
FLAGS, unparsed = parser.parse_known_args()
pp = pprint.PrettyPrinter()
pp.pprint(FLAGS.__dict__)
sys.stdout.flush()
tf.app.run(main=main, argv=[sys.argv[0]] + unparsed)