-
Notifications
You must be signed in to change notification settings - Fork 17
/
Copy pathinference.py
68 lines (56 loc) · 2.37 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
from model import sapd
import cv2
import os
import numpy as np
import time
import glob
from utils import preprocess_image
from utils.draw_boxes import draw_boxes
from utils.post_process_boxes import post_process_boxes
def main():
os.environ['CUDA_VISIBLE_DEVICES'] = '1'
phi = 0
model_path = 'checkpoints/2020-03-13/pascal_64_0.2799_0.4923_0.7896_w.h5'
image_sizes = (512, 640, 768, 896, 1024, 1280, 1408)
image_size = image_sizes[phi]
classes = [
'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair',
'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train',
'tvmonitor',
]
num_classes = len(classes)
score_threshold = 0.3
colors = [np.random.randint(0, 256, 3).tolist() for i in range(num_classes)]
model, prediction_model = sapd(phi=phi,
num_classes=num_classes,
score_threshold=score_threshold,
)
prediction_model.load_weights(model_path, by_name=True)
for image_path in glob.glob('datasets/VOC2007/JPEGImages/*.jpg'):
image = cv2.imread(image_path)
src_image = image.copy()
image = image[:, :, ::-1]
h, w = image.shape[:2]
image, scale, offset_h, offset_w = preprocess_image(image, image_size=image_size)
# run network
start = time.time()
boxes, scores, labels = prediction_model.predict_on_batch([np.expand_dims(image, axis=0)])
boxes, scores, labels = np.squeeze(boxes), np.squeeze(scores), np.squeeze(labels)
print(time.time() - start)
boxes = post_process_boxes(boxes=boxes,
scale=scale,
offset_h=offset_h,
offset_w=offset_w,
height=h,
width=w)
# select indices which have a score above the threshold
indices = np.where(scores[:] > score_threshold)[0]
# select those detections
boxes = boxes[indices]
labels = labels[indices]
draw_boxes(src_image, boxes, scores, labels, colors, classes)
cv2.namedWindow('image', cv2.WINDOW_NORMAL)
cv2.imshow('image', src_image)
key = cv2.waitKey(0)
if __name__ == '__main__':
main()