-
Notifications
You must be signed in to change notification settings - Fork 1
/
references.bib
395 lines (355 loc) · 13.3 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
@article{angelopoulos2024,
author = {Angelopoulos, Anastasios N. and Cand{\`e}s, Emmanuel J. and Tibshirani, Ryan J.},
journal = {Advances in Neural Information Processing Systems},
pages = {23047--23074},
title = {Conformal PID control for time series prediction},
volume = {36},
year = {2023}
}
@inproceedings{angelopoulos2024online,
author = {Angelopoulos, Anastasios N and Barber, Rina Foygel and Bates, Stephen},
booktitle = {Proceedings of the 41st International Conference on Machine Learning},
organization = {PMLR},
pages = {1616--1630},
title = {Online conformal prediction with decaying step sizes},
volume = 235,
year = {2024}
}
@article{barber2021,
author = {Barber, Rina Foygel and Cand{\`e}s, Emmanuel J and Ramdas, Aaditya and Tibshirani, Ryan J},
journal = {The Annals of Statistics},
number = {1},
pages = {486--507},
title = {Predictive inference with the jackknife+},
volume = {49},
year = {2021}
}
@article{barber2023,
author = {Barber, Rina Foygel and Cand{\`e}s, Emmanuel J. and Ramdas, Aaditya and Tibshirani, Ryan J.},
doi = {10.1214/23-aos2276},
journal = {The Annals of Statistics},
number = {2},
pages = {816-845},
title = {Conformal prediction beyond exchangeability},
volume = {51},
year = {2023}
}
@article{bastani2022,
author = {Bastani, Osbert and Gupta, Varun and Jung, Christopher and Noarov, Georgy and Ramalingam, Ramya and Roth, Aaron},
journal = {Advances in Neural Information Processing Systems},
pages = {29362--29373},
title = {Practical adversarial multivalid conformal prediction},
volume = {35},
year = {2022}
}
@inproceedings{bhatnagar2023,
author = {Bhatnagar, Aadyot and Wang, Huan and Xiong, Caiming and Bai, Yu},
booktitle = {Proceedings of the 40th International Conference on Machine Learning},
organization = {PMLR},
pages = {2337--2363},
title = {Improved online conformal prediction via strongly adaptive online learning},
volume = 202,
year = {2023}
}
@inproceedings{chernozhukov2018,
author = {Chernozhukov, Victor and W{\"u}thrich, Kaspar and Yinchu, Zhu},
booktitle = {Conference On learning theory},
organization = {PMLR},
pages = {732--749},
title = {Exact and robust conformal inference methods for predictive machine learning with dependent data},
volume = 75,
year = {2018}
}
@incollection{diebold1996,
author = {Diebold, Francis X and Lopez, Jose A},
booktitle = {Statistical Methods in Finance},
doi = {https://doi.org/10.1016/S0169-7161(96)14010-4},
issn = {0169-7161},
pages = {241-268},
publisher = {Elsevier},
series = {Handbook of Statistics},
title = {Forecast evaluation and combination},
volume = {14},
year = {1996}
}
@book{diebold2024,
author = {Diebold, Francis X},
note = {Version Thursday 22nd August 2024},
publisher = {Department of Economics, University of Pennsylvania},
title = {Forecasting: in Economics, Business, Finance and Beyond},
year = {2024}
}
@article{gibbs2021,
author = {Gibbs, Isaac and Cand{\`e}s, Emmanuel},
journal = {Advances in Neural Information Processing Systems},
pages = {1660--1672},
title = {Adaptive conformal inference under distribution shift},
volume = {34},
year = {2021}
}
@article{gibbs2024,
author = {Gibbs, Isaac and Cand{\`e}s, Emmanuel J},
journal = {Journal of Machine Learning Research},
number = {162},
pages = {1--36},
title = {Conformal inference for online prediction with arbitrary distribution shifts},
volume = {25},
year = {2024}
}
@article{guan2023,
author = {Guan, Leying},
journal = {Biometrika},
number = {1},
pages = {33--50},
publisher = {Oxford University Press},
title = {Localized conformal prediction: A generalized inference framework for conformal prediction},
volume = {110},
year = {2023}
}
@article{harvey1997,
author = {Harvey, David and Leybourne, Stephen and Newbold, Paul},
journal = {International Journal of Forecasting},
number = {2},
pages = {281--291},
publisher = {Elsevier},
title = {Testing the equality of prediction mean squared errors},
volume = {13},
year = {1997}
}
@article{hore2023,
author = {Hore, Rohan and Barber, Rina Foygel},
journal = {arXiv preprint arXiv:2310.07850},
title = {Conformal prediction with local weights: randomization enables local guarantees},
year = {2023}
}
@book{hyndman2021,
address = {Melbourne, Australia},
author = {Hyndman, Rob J and Athanasopoulos, George},
edition = {3rd edition},
note = {\url{https://OTexts.com/fpp3}},
publisher = {OTexts},
title = {Forecasting: principles and practice},
year = 2021
}
@manual{hyndman2024,
author = {Hyndman, Rob J and Athanasopoulos, George and Bergmeir, Christoph
and Caceres, Gabriel and Chhay, Leanne and O'Hara-Wild, Mitchell
and Petropoulos, Fotios and Razbash, Slava and Wang, Earo
and Yasmeen, Farah},
note = {R package version 8.23.0. \url{https://pkg.robjhyndman.com/forecast/}},
title = {forecast: Forecasting functions for time series and linear models},
year = 2024
}
@article{lei2014,
author = {Lei, Jing and Wasserman, Larry},
journal = {Journal of the Royal Statistical Society Series B: Statistical Methodology},
number = {1},
pages = {71--96},
publisher = {Oxford University Press},
title = {Distribution-free prediction bands for non-parametric regression},
volume = {76},
year = {2014}
}
@article{lei2018,
author = {Lei, Jing and G’Sell, Max and Rinaldo, Alessandro and Tibshirani, Ryan J and Wasserman, Larry},
journal = {Journal of the American Statistical Association},
number = {523},
pages = {1094--1111},
publisher = {Taylor \& Francis},
title = {Distribution-free predictive inference for regression},
volume = {113},
year = {2018}
}
@article{lei2021,
author = {Lei, Lihua and Cand{\`e}s, Emmanuel J},
journal = {Journal of the Royal Statistical Society Series B: Statistical Methodology},
number = {5},
pages = {911--938},
publisher = {Oxford University Press},
title = {Conformal inference of counterfactuals and individual treatment effects},
volume = {83},
year = {2021}
}
@inproceedings{lopes2024,
author = {Lopes, Aloysio Galv{\~a}o and Goubault, Eric and Putot, Sylvie and Pautet, Laurent},
booktitle = {Proceedings of the Thirteenth Symposium on Conformal and Probabilistic Prediction with Applications},
organization = {PMLR},
pages = {345--365},
title = {{ConForME: Multi-horizon conditional conformal time series forecasting}},
volume = 230,
year = {2024}
}
@article{mao2024,
author = {Mao, Huiying and Martin, Ryan and Reich, Brian J},
journal = {Journal of the American Statistical Association},
number = {546},
pages = {904--914},
publisher = {Taylor \& Francis},
title = {Valid model-free spatial prediction},
volume = {119},
year = {2024}
}
@article{oliveira2024,
author = {Oliveira, Roberto I and Orenstein, Paulo and Ramos, Thiago and Romano, Joao Vitor},
journal = {Journal of Machine Learning Research},
number = {225},
pages = {1--38},
title = {Split Conformal Prediction and Non-Exchangeable Data},
volume = {25},
year = {2024}
}
@inproceedings{papadopoulos2002,
author = {Papadopoulos, Harris and Proedrou, Kostas and Vovk, Volodya and Gammerman, Alex},
booktitle = {Machine Learning: ECML 2002: 13th European Conference on Machine Learning Helsinki, Finland, August 19--23, 2002 Proceedings 13},
organization = {Springer},
pages = {345--356},
title = {Inductive confidence machines for regression},
year = {2002}
}
@inproceedings{papadopoulos2007,
author = {Papadopoulos, Harris and Vovk, Volodya and Gammerman, Alex},
booktitle = {19th IEEE International Conference on Tools with Artificial Intelligence (ICTAI 2007)},
organization = {IEEE},
pages = {388--395},
title = {Conformal prediction with neural networks},
volume = {2},
year = {2007}
}
@incollection{papadopoulos2008,
author = {Papadopoulos, Harris},
booktitle = {Tools in Artificial Intelligence},
chapter = 18,
editor = {Paula Fritzsche},
pages = {315--330},
publisher = {InTech},
title = {Inductive conformal prediction: Theory and application to neural networks},
year = {2008}
}
@article{patton2007,
author = {Patton, Andrew J and Timmermann, Allan},
journal = {Journal of Econometrics},
number = {2},
pages = {884--918},
publisher = {Elsevier},
title = {Properties of optimal forecasts under asymmetric loss and nonlinearity},
volume = {140},
year = {2007}
}
@inproceedings{podkopaev2021,
author = {Podkopaev, Aleksandr and Ramdas, Aaditya},
booktitle = {Proceedings of the Thirty-Seventh Conference on Uncertainty in Artificial Intelligence},
organization = {PMLR},
pages = {844--853},
title = {Distribution-free uncertainty quantification for classification under label shift},
volume = 161,
year = {2021}
}
@inproceedings{schlembach2022,
author = {Schlembach, Filip and Smirnov, Evgueni and Koprinska, Irena},
booktitle = {Proceedings of the Eleventh Symposium on Conformal and Probabilistic Prediction with Applications},
organization = {PMLR},
pages = {316--318},
title = {Conformal multistep-ahead multivariate time-series forecasting},
volume = {179},
year = {2022}
}
@article{shafer2008,
author = {Shafer, Glenn and Vovk, Vladimir},
journal = {Journal of Machine Learning Research},
number = {3},
title = {A tutorial on conformal prediction.},
volume = {9},
year = {2008}
}
@phdthesis{sommer2023,
author = {Sommer, Benedikt},
school = {Technical University of Denmark},
title = {Forecasting and decision-making for empty container repositioning},
year = {2023}
}
@article{stankeviciute2021,
author = {Stankeviciute, Kamile and M Alaa, Ahmed and van der Schaar, Mihaela},
journal = {Advances in Neural Information Processing Systems},
pages = {6216--6228},
title = {Conformal time-series forecasting},
volume = {34},
year = {2021}
}
@article{sun2022,
author = {Sun, Sophia and Yu, Rose},
journal = {arXiv preprint arXiv:2212.03281},
title = {Copula conformal prediction for multi-step time series forecasting},
year = {2022}
}
@article{tibshirani2019,
author = {Tibshirani, Ryan J and Foygel Barber, Rina and Candes, Emmanuel and Ramdas, Aaditya},
journal = {Advances in Neural Information Processing Systems},
title = {Conformal prediction under covariate shift},
volume = {32},
year = {2019}
}
@book{tong1990,
author = {Tong, Howell},
publisher = {Clarendon Press},
title = {Non-linear time series: a dynamical system approach},
year = {1990}
}
@book{vovk2005,
author = {Vovk, Vladimir and Gammerman, Alexander and Shafer, Glenn},
doi = {10.1007/b106715},
publisher = {Springer-Verlag},
title = {Algorithmic Learning in a Random World},
year = {2005}
}
@inproceedings{xu2021,
author = {Xu, Chen and Xie, Yao},
booktitle = {Proceedings of the 38th International Conference on Machine Learning},
organization = {PMLR},
pages = {11559--11569},
title = {Conformal prediction interval for dynamic time-series},
volume = 139,
year = {2021}
}
@inproceedings{xu2023,
author = {Xu, Chen and Xie, Yao},
booktitle = {Proceedings of the 40th International Conference on Machine Learning},
organization = {PMLR},
pages = {38707--38727},
title = {Sequential predictive conformal inference for time series},
volume = 202,
year = {2023}
}
@article{yang2024,
author = {Yang, Yachong and Kuchibhotla, Arun Kumar and Tchetgen Tchetgen, Eric},
journal = {Journal of the Royal Statistical Society Series B: Statistical Methodology},
number = 4,
pages = {943-965},
title = {Doubly robust calibration of prediction sets under covariate shift},
volume = 86,
year = {2024}
}
@article{yang2024ts,
author = {Yang, Zitong and Cand{\`e}s, Emmanuel and Lei, Lihua},
journal = {arXiv preprint arXiv:2402.05203},
title = {Bellman Conformal Inference: Calibrating Prediction Intervals For Time Series},
year = {2024}
}
@article{yu2022,
author = {Yu, Xiufan and Yao, Jiawei and Xue, Lingzhou},
journal = {Journal of Business \& Economic Statistics},
number = {1},
pages = {342--354},
publisher = {Taylor \& Francis},
title = {Nonparametric estimation and conformal inference of the sufficient forecasting with a diverging number of factors},
volume = {40},
year = {2022}
}
@inproceedings{zaffran2022,
author = {Zaffran, Margaux and F{\'e}ron, Olivier and Goude, Yannig and Josse, Julie and Dieuleveut, Aymeric},
booktitle = {Proceedings of the 39th International Conference on Machine Learning},
organization = {PMLR},
pages = {25834--25866},
title = {Adaptive conformal predictions for time series},
volume = 162,
year = {2022}
}