-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate_acdc.py
565 lines (461 loc) · 27 KB
/
evaluate_acdc.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
# CUDA_VISIBLE_DEVICES=1,2,4,5
import io
import os
import argparse
from tqdm import tqdm
import numpy as np
import torch
import torch.nn.functional as F
from torchvision import utils as vutils
from torchvision.transforms import GaussianBlur
from models.RViT_BidTag_light_3d import RViT
# from models.RViT_BidTag import RViT
from models.segmentation import deeplabv3_resnet50_iekd
from utils.tools import get_world_size, get_global_rank, get_local_rank, get_master_ip
from utils.SSIM_metric import SSIM
from utils.PSNR_metric import PSNR
from datasets.phhk_dataset import PHHKDataset
# from datasets.pah_dataset_test import Seg_PAHDataset
from datasets.ACDC_test import ACDC_Dataset
from monai.data import DataLoader
import cv2
import wandb
import matplotlib.pyplot as plt
import matplotlib.colors
import matplotlib.cm as cm
norm = matplotlib.colors.Normalize()
Gaussian = GaussianBlur(kernel_size=(5, 5), sigma=(0.1, 2.0))
class Eval:
def __init__(self, args):
self.RViT = RViT(image_size = args.image_size,
patch_size = args.patch_size,
length = args.image_size[2],
depth = args.num_layers,
heads = args.num_heads,
mlp_dim = args.latent_dim,
dropout = 0.1,).to(args.device)
pretrain_params = torch.load('/home/jyangcu/Pulmonary_Arterial_Hypertension/results/checkpoints/checkpoint_120.pth', map_location='cpu')
pretrain_params = {k.replace('module.', ''): v for k, v in pretrain_params.items() if k.replace('module.', '') in self.RViT.state_dict()}
self.RViT.load_state_dict(pretrain_params)
infos = np.load('/home/jyangcu/Pulmonary_Arterial_Hypertension/datasets/dataset_utils/ACDC_info.npy', allow_pickle=True).item()
valid_dataset = ACDC_Dataset(args, infos)
self.valid_loader = DataLoader(valid_dataset, batch_size=1, shuffle=False, num_workers=1)
self.SSIM_metric = SSIM(window_size = 8)
self.PSNR_metric = PSNR()
self.eval(args)
def eval(self, args):
self.RViT.eval()
record_steps = 0
all_psnr, all_dice, all_ssim, lv_dice, rv_dice, myo_dice, lv_dice = [], [], [], [], [], [], []
pbar = tqdm(self.valid_loader)
for step, (vids, start_anno, end_anno, es_f) in enumerate(pbar):
if step > 0:
break
hidden = torch.zeros(1, ((args.image_size[0] * args.image_size[1] * args.image_size[2]) // (args.patch_size[0] * args.patch_size[1] * args.patch_size[2])), args.latent_dim).to(args.device)
_, inf_flow_all, neg_inf_flow_all, lag_flow, neg_lag_flow, lag_register, forward_regsiter, backward_regsiter = self.RViT(vids.to(args.device), hidden, train=False)
com_input_vids = vids.squeeze().permute(0,3,1,2)[1:, ...].cpu().mul(255)
com_lag_register = lag_register.squeeze(0).cpu().mul(255)
com_forward_regsiter = torch.stack(forward_regsiter, dim=1).squeeze().permute(0,3,1,2).cpu().mul(255)
ssim_score = self.SSIM_metric(com_forward_regsiter, com_input_vids)
psnr_score = self.PSNR_metric(com_forward_regsiter, com_input_vids)
all_psnr.append(psnr_score.detach().cpu().numpy())
all_ssim.append(ssim_score.detach().cpu().numpy())
print("lag-reg: SSIM ---> {} , PSNR ---> {}".format(ssim_score, psnr_score))
for idx in tqdm(range(len(inf_flow_all))):
# inf_flow_plt = self.plot_warpgrid(vids_org[0, :, idx, ...], inf_flow_all[idx][0, ...], segment_result, interval=4, mark='r')
# inf_flow_plt.savefig(f'./results/flow_result_eval/inf_flow_img_warp_{idx}.png')
# inf_flow_plt.clf()
# vutils.save_image(input_vids[0, :, idx, ...].add(1.0).mul(0.5), f'./results/flow_result_eval/org_img_{idx}.png')
# lag_flow_plt = self.plot_warpgrid(lag_register[0][idx], lag_flow[0, :, idx, ...], interval=4, mark='c')
# lag_flow_plt.savefig(f'./results/flow_result_eval/lag_flow_img_warp_{idx}.png')
# lag_flow_plt.clf()
# inf_flow_plt = self.plot_warpgrid(vids[0, :, idx, ...], inf_flow_all[idx][0, ...], interval=8, mark='w', heatmap=False)
# inf_flow_plt.savefig(f'./results/flow_result_eval/inf_flow_heatmap_warp_{idx}.png', pad_inches=0.0)
# inf_flow_plt.clf()
# For Masks Evaluation
if idx == 0:
c_mask = start_anno.transpose(2,3)
inf_flow_seg_plt, c_mask = self.plot_seg_warpgrid(vids[0, idx+1, ...], c_mask, end_anno.transpose(2,3), inf_flow_all[idx][0, ...], mark='w')
if idx == int(es_f[0]) - 1:
track_segments = c_mask
inf_flow_seg_plt.savefig(f'./results/flow_result_eval/inf_flow_seg_warp_{idx}.png',pad_inches=0.0)
inf_flow_seg_plt.clf()
gt_segments = end_anno.transpose(2,3)
gt_segments = self.transfor_label(gt_segments)
track_segments = self.transfor_label(track_segments)
pixel_acc, dice, precision, specificity, recall = self._calculate_overlap_metrics(torch.where(gt_segments> 0, 1, 0), torch.where(track_segments > 0, 1, 0))
all_dice.append(dice.detach().cpu().numpy())
for i in range(3):
i_segments_track = track_segments[i, ...]
i_segments_gt = gt_segments[i, ...]
_, i_dice, _, _, _ = self._calculate_overlap_metrics(i_segments_gt, i_segments_track)
if i == 0:
rv_dice.append(i_dice.detach().cpu().numpy())
elif i == 1:
myo_dice.append(i_dice.detach().cpu().numpy())
elif i == 2:
lv_dice.append(i_dice.detach().cpu().numpy())
print("Pixel Acc is : ", pixel_acc)
print("Dice Score is : ", dice)
print("Precision is : ", precision)
print("Specificity is : ", specificity)
print("Recall is : ", recall)
print("ES Frame Number : ", int(es_f[0])-1)
# orginial_imgs = input_vids[0, :, 1:, ...].transpose(0, 1)
# forward_imgs = torch.stack(forward_regsiter, dim=0)[:, 0, ...].detach().cpu()
# backward_imgs = torch.stack(backward_regsiter, dim=0)[:, 0, ...].detach().cpu()
# lag_imgs = lag_register[0].detach().cpu()
# combine_imgs = torch.cat([orginial_imgs, forward_imgs, backward_imgs, lag_imgs], dim=0)
# vutils.save_image(combine_imgs.add(1.0).mul(0.5), os.path.join("results/example_result_eval", f"example_{step}.jpg"), nrow=len(inf_flow_all))
print("SSIM: Mean:{}, Std:{}".format(np.mean(all_ssim), np.std(all_ssim)))
print("PSNR: Mean:{}, Std:{}".format(np.mean(all_psnr), np.std(all_psnr)))
print("DICE: Mean:{}, Std:{}".format(np.mean(all_dice), np.std(all_dice)))
print("RV_DICE: Mean:{}, Std:{}".format(np.mean(rv_dice), np.std(rv_dice)))
print("MYO_DICE: Mean:{}, Std:{}".format(np.mean(myo_dice), np.std(myo_dice)))
print("LV_DICE: Mean:{}, Std:{}".format(np.mean(lv_dice), np.std(lv_dice)))
def plot_warpgrid(self, img, warp, segment_result=None,
interval=2, show_axis=False, mark='k', next_frame=None,
heatmap=False, get_warp_img=False):
"""
plots the given warpgrid
@param warp: array, H x W x 2, the transformation
@param interval: int, The interval between grid-lines
@param show_axis: Bool, should axes be included?
@return: matplotlib plot. Show with plt.show()
"""
vectors = [torch.arange(0, s) for s in (args.image_size[0], args.image_size[1])]
grids = torch.meshgrid(vectors)
grid = torch.stack(grids) # y, x, z
grid = torch.unsqueeze(grid, 0) # add batch
grid = grid.type(torch.FloatTensor)
warp = warp.unsqueeze(0).detach().cpu()
warp_save = warp
velocity_field = torch.sqrt(torch.mul(torch.pow(warp[:, 0], 2), torch.pow(warp[:, 1], 2)))
velocity_field = velocity_field - torch.min(velocity_field)
velocity_field = velocity_field / torch.max(velocity_field)
# warp[:, 0] = torch.where(velocity_field > 0.2, warp[:, 0], 0)
# warp[:, 1] = torch.where(velocity_field > 0.2, warp[:, 1], 0)
warp = grid + warp
warp_save = grid + warp_save
shape = warp.shape[2:]
for i in range(len(shape)):
warp[:, i, ...] = 2 * (warp[:, i, ...] / (shape[i] - 1) - 0.5)
warp_save[:, i, ...] = (2 * (warp_save[:, i, ...] / (shape[i] - 1) - 0.5) - 2 * (grid[:, i] / (shape[i] - 1) - 0.5)) * shape[i]
if len(shape) == 2:
warp = warp.permute(0, 2, 3, 1)
warp = warp[..., [1, 0]]
elif len(shape) == 3:
warp = warp.permute(0, 2, 3, 4, 1)
warp = warp[..., [2, 1, 0]]
if len(shape) == 2:
warp_save = warp_save.permute(0, 2, 3, 1)
warp_save = warp_save[..., [1, 0]]
elif len(shape) == 3:
warp_save = warp_save.permute(0, 2, 3, 4, 1)
warp_save = warp_save[..., [2, 1, 0]]
warp_save = warp_save[0, ...]
if img is not None:
img = img.transpose(1,2)
if next_frame is not None:
next_img = next_frame.transpose(1,2)
# Get the warpping img
if get_warp_img:
new_locs = torch.zeros_like(warp)
for i in range(len(shape)):
new_locs[:, i, ...] = 2 * (warp[:, i, ...] / (shape[i] - 1) - 0.5)
img_warp = torch.nn.functional.grid_sample(img.unsqueeze(0), new_locs, align_corners=True, mode='bilinear')[0]
# Get the heatmap according to the velocity fields
if heatmap:
lengths = np.sqrt(np.square(warp_save[:, :, 0]) + np.square(warp_save[:, :, 1]))
img_heat = lengths - torch.min(lengths)
img_heat = img_heat / torch.max(img_heat)
img_heat = torch.where(img_heat > 0.2, 0.2, img_heat)
img_heat = img_heat * 4
img_heat = torch.where(img.permute(2, 1, 0)[:,:,0]> -0.5, img_heat, 0)
img_heat = img_heat.mul(255)
# Get the segmentation Result
if segment_result is not None:
# Display : mask with grey scale, mask with color 1, mask with color 2 and mask with outside contours
filterd_masked_bw = np.zeros((256, 256, 1))
filterd_masked_c1 = np.zeros((256, 256, 3))
filterd_masked_c2 = np.zeros((256, 256, 3))
filterd_masked_expand = np.zeros((256, 256, 3))
# Here for each segmented part
# for part in range(1, 5):
seg_part = torch.where(torch.nn.Sigmoid()(segment_result[:, 1, ...]) > 0.5, 1, 0).permute(1, 2, 0)
# Find the contours from segmentation results
seg_part_cv2 = np.where(seg_part.numpy() > 0, 255, 0)
_, threshold = cv2.threshold(np.uint8(seg_part_cv2), 127, 255, cv2.THRESH_BINARY)
contours, _ = cv2.findContours(threshold, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE) # countours is a python list
# Find the largest countours
if len(contours) > 0:
area = []
for k in range(len(contours)):
area.append(cv2.contourArea(contours[k]))
max_idx = np.argmax(np.array(area))
cv2.drawContours(filterd_masked_c1, contours, max_idx, (83, 253, 254), cv2.FILLED)
cv2.drawContours(filterd_masked_c2, contours, max_idx, (253, 83, 254), cv2.FILLED)
cv2.drawContours(filterd_masked_bw, contours, max_idx, 255, cv2.FILLED)
filterd_masked_bw = self.dilate_mask(filterd_masked_bw, 10)
expanded_contours, _ = cv2.findContours(np.uint8(filterd_masked_bw), cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
if len(expanded_contours) > 0:
area = []
for k in range(len(expanded_contours)):
area.append(cv2.contourArea(expanded_contours[k]))
max_idx_expanded_contours = np.argmax(np.array(area))
cv2.drawContours(filterd_masked_expand, expanded_contours, max_idx_expanded_contours, (83, 253, 254), cv2.FILLED)
# cnt_max = expanded_contours[max_idx_expanded_contours]
# rect = cv2.minAreaRect(cnt_max)
# box = cv2.boxPoints(rect)
# box = [np.int0(box)]
# # left top / left bottom / right bottom / right top : formulated as Y, X
# box[0][0] = [box[0][0][0]+10, box[0][0][1]-10]
# box[0][1] = [box[0][1][0]+10, box[0][1][1]-10]
# box[0][2] = [box[0][2][0]+10, box[0][2][1]+10]
# box[0][3] = [box[0][3][0]+10, box[0][3][1]+10]
# cv2.drawContours(filterd_masked_expand_square, box, -1, (255, 255, 255), cv2.FILLED)
# img_ref = img.permute(2, 1, 0)
# warp_save[:,:,0] = torch.where(img_ref[:,:,0]<-0.998, 0, warp_save[:,:,0])
# warp_save[:,:,1] = torch.where(img_ref[:,:,0]<-0.998, 0, warp_save[:,:,1])
# velocity_lengths = torch.sqrt(torch.square(warp_save[:, :, 0]) + torch.square(warp_save[:, :, 1])).transpose(0, 1).unsqueeze(-1).repeat(1, 1, 3)
filterd_masked_expand = torch.from_numpy(filterd_masked_expand)
filterd_masked_all = (filterd_masked_expand-filterd_masked_c1+filterd_masked_c2).transpose(0, 1).numpy().astype(np.uint8)
if heatmap:
plt.imshow(img.permute(1, 2, 0).add(1.0).mul(127.5).detach().cpu().numpy(), cmap='gray', vmin=0, vmax=255)
plt.imshow(img_heat.unsqueeze(0).permute(2, 1, 0).detach().cpu().numpy(), cmap='jet', vmin=0, vmax=255, alpha=0.4)
else:
# img = torch.flip(img, dims=[2])
plt.imshow(img.permute(1, 2, 0).add(1.0).mul(127.5).detach().cpu().numpy(), cmap='gray', vmin=0, vmax=255)
if segment_result is not None:
plt.imshow(filterd_masked_all, vmin=0, vmax=255, alpha=0.4)
if show_axis is False:
plt.axis('off')
ax = plt.gca()
ax.set_aspect('equal')
# This code is for the mesh drawing
#
# warp = warp[0, ...].numpy()
# for row in range(0, warp.shape[0], interval):
# plt.plot(warp[row, :, 1], warp[row, :, 0], mark)
# for col in range(0, warp.shape[1], interval):
# plt.plot(warp[:, col, 1], warp[:, col, 0], mark)
warp_save = warp_save.numpy()
if segment_result is not None:
filterd_masked_expand = np.transpose(np.sum((filterd_masked_expand).transpose(0, 1).numpy(), axis=2))
if img is not None:
# img_ref = img.permute(2, 1, 0)
# warp_save[:,:,0] = np.where(img_ref[:,:,0]<-0.99, 0, warp_save[:,:,0])
# warp_save[:,:,1] = np.where(img_ref[:,:,0]<-0.99, 0, warp_save[:,:,1])
if segment_result is not None:
warp_save[:,:,0] = np.where(filterd_masked_expand[:,:] > 0, warp_save[:,:,0], 0)
warp_save[:,:,1] = np.where(filterd_masked_expand[:,:] > 0, warp_save[:,:,1], 0)
img_ref = img.permute(2, 1, 0)
warp_save[:,:,0] = np.where(img_ref[:,:,0]<0.01, 0, warp_save[:,:,0])
warp_save[:,:,1] = np.where(img_ref[:,:,0]<0.01, 0, warp_save[:,:,1])
plt.quiver(grids[0][::4, ::4], grids[1][::4, ::4], warp_save[::4, ::4, 0], warp_save[::4, ::4, 1], units='xy', scale_units='xy', angles='xy', color='r', scale=1/2)
return plt
def plot_seg_warpgrid(self, img, mask, mask_tgt, warp, segment_result=None,
interval=2, show_axis=False, mark='k', wrap_seg=True):
"""
plots the given warpgrid
@param warp: array, H x W x 2, the transformation
@param interval: int, The interval between grid-lines
@param show_axis: Bool, should axes be included?
@return: matplotlib plot. Show with plt.show()
"""
vectors = [torch.arange(0, s) for s in (args.image_size[0], args.image_size[1], args.image_size[2])]
grids = torch.meshgrid(vectors)
grid = torch.stack(grids) # y, x, z
grid = torch.unsqueeze(grid, 0) # add batch
grid = grid.type(torch.FloatTensor)
warp = warp.unsqueeze(0).detach().cpu()
warp = grid + warp
warp_save = grid + warp
shape = warp.shape[2:]
for i in range(len(shape)):
warp[:, i, ...] = 2 * (warp[:, i, ...] / (shape[i] - 1) - 0.5)
warp_save[:, i, ...] = (2 * (warp[:, i, ...] / (shape[i] - 1) - 0.5) - 2 * (grid[:, i] / (shape[i] - 1) - 0.5)) * shape[i]
if len(shape) == 2:
warp = warp.permute(0, 2, 3, 1)
warp = warp[..., [1, 0]]
warp_save = warp_save.permute(0, 2, 3, 1)
warp_save = warp_save[..., [1, 0]]
elif len(shape) == 3:
warp = warp.permute(0, 2, 3, 4, 1)
warp = warp[..., [2, 1, 0]]
warp_save = warp_save.permute(0, 2, 3, 4, 1)
warp_save = warp_save[..., [2, 1, 0]]
warp_save = warp_save[0, ...]
if img is not None:
img = img.transpose(1,2)
mask = mask.float()
mask_tgt = mask_tgt.float()
# Get the warpping img
if wrap_seg:
seg_warp = torch.nn.functional.grid_sample(mask, warp, align_corners=True, mode='nearest')
seg_warp_a = torch.where(seg_warp == 1, 10, seg_warp)
seg_warp_b = torch.where(seg_warp == 1, 10, seg_warp)
seg_warp_c = torch.where(seg_warp == 1, 255, seg_warp)
seg_warp_a = torch.where(seg_warp_a == 2, 255, seg_warp_a)
seg_warp_b = torch.where(seg_warp_b == 2, 10, seg_warp_b)
seg_warp_c = torch.where(seg_warp_c == 2, 10, seg_warp_c)
seg_warp_a = torch.where(seg_warp_a == 3, 10, seg_warp_a)
seg_warp_b = torch.where(seg_warp_b == 3, 255, seg_warp_b)
seg_warp_c = torch.where(seg_warp_c == 3, 10, seg_warp_c)
# seg_warp_rgb = torch.cat([seg_warp_a, seg_warp_b, seg_warp_c], dim=0)
seg_mask_a = torch.where(seg_warp == mask_tgt, 0, seg_warp_a)
seg_mask_b = torch.where(seg_warp == mask_tgt, 0, seg_warp_b)
seg_mask_c = torch.where(seg_warp == mask_tgt, 0, seg_warp_c)
seg_mask = torch.cat([seg_mask_a, seg_mask_b, seg_mask_c], dim=0)
seg_mask_gt_a = torch.where(mask_tgt == 1, 10, mask_tgt)
seg_mask_gt_b = torch.where(mask_tgt == 1, 10, mask_tgt)
seg_mask_gt_c = torch.where(mask_tgt == 1, 255, mask_tgt)
seg_mask_gt_a = torch.where(seg_mask_gt_a == 2, 255, seg_mask_gt_a)
seg_mask_gt_b = torch.where(seg_mask_gt_b == 2, 10, seg_mask_gt_b)
seg_mask_gt_c = torch.where(seg_mask_gt_c == 2, 10, seg_mask_gt_c)
seg_mask_gt_a = torch.where(seg_mask_gt_a == 3, 10, seg_mask_gt_a)
seg_mask_gt_b = torch.where(seg_mask_gt_b == 3, 255, seg_mask_gt_b)
seg_mask_gt_c = torch.where(seg_mask_gt_c == 3, 10, seg_mask_gt_c)
seg_mask_gt = torch.cat([seg_mask_gt_a, seg_mask_gt_b, seg_mask_gt_c], dim=0)
if show_axis is False:
plt.axis('off')
n, w, h, d = img.shape
seg_mask = seg_mask[..., d//2].squeeze()
seg_mask_gt = seg_mask_gt[..., d//2].squeeze()
# seg_warp_rgb = seg_warp_rgb[..., d//2].squeeze()
img = img[..., d//2].expand(3,-1,-1).add(1.0).mul(127.5)
img = torch.where(seg_mask > 0, seg_mask, img) * 0.7 + img * 0.3
# img = torch.where(seg_mask_gt > 0, seg_mask_gt, img) * 0.7 + img * 0.3
plt.imshow(img.permute(1, 2, 0).detach().cpu().numpy().astype(np.uint8), cmap='viridis', vmin=0, vmax=255)
return plt, seg_warp
def dilate_mask(self, mask, kernel_size):
kernel = np.ones((kernel_size, kernel_size), np.uint8)
dilated = cv2.dilate(mask, kernel, iterations=1)
return dilated
def draw_grid(self, img, grid_height = 6, grid_width = 6, line_width=5):
height, width, _ = img.shape
img = (img + 1) * 127.5
# img = cv2.cvtColor(img, cv2.COLOR_GRAY2RGB)
for x in range(0, width-1, grid_width):
cv2.line(img, (x, 0), (x, height), (255))
for y in range(0, height-1, grid_height):
cv2.line(img, (0, y), (width, y), (255))
img = img / 127.5 - 1
return img
def vector_to_rgb(self, angle, absolute):
"""Get the rgb value for the given `angle` and the `absolute` value
Parameters
----------
angle : float
The angle in radians
absolute : float
The absolute value of the gradient
Returns
-------
array_like
The rgb value as a tuple with values [0..1]
"""
max_abs = np.max(absolute)
# normalize angle
angle = angle % (2 * np.pi)
if angle < 0:
angle += 2 * np.pi
return matplotlib.colors.hsv_to_rgb((angle / 2 / np.pi,
absolute / max_abs,
absolute / max_abs))
def _calculate_overlap_metrics(self, gt, pred, eps=1e-5):
output = pred.reshape(-1, )
target = gt.reshape(-1, ).float()
tp = torch.sum(output * target) # TP
fp = torch.sum(output * (1 - target)) # FP
fn = torch.sum((1 - output) * target) # FN
tn = torch.sum((1 - output) * (1 - target)) # TN
pixel_acc = (tp + tn + eps) / (tp + tn + fp + fn + eps)
dice = (2 * tp + eps) / (2 * tp + fp + fn + eps)
precision = (tp + eps) / (tp + fp + eps)
recall = (tp + eps) / (tp + fn + eps)
specificity = (tn + eps) / (tn + fp + eps)
return pixel_acc, dice, precision, specificity, recall
def transfor_label(self, seg):
RV = torch.where(seg == 1, 1, 0)
MYO = torch.where(seg == 2, 1, 0)
LV = torch.where(seg == 3, 1, 0)
return torch.stack([RV, MYO, LV], dim=0)
def main(rank, args):
def wandb_init():
wandb.init(
project='Unsupervised Echocardiogram Segmentation',
entity='jiewen-yang66',
name='PHHK-Dataset-Deep-Tag-original',
notes='Ver 1.0',
save_code=True
)
wandb.config.update(args)
try:
args.local_rank
except AttributeError:
args.global_rank = rank
args.local_rank = args.enable_GPUs_id[rank]
else:
if args.distributed:
args.global_rank = rank
args.local_rank = args.enable_GPUs_id[rank]
if args.distributed:
torch.cuda.set_device(int(args.local_rank))
torch.distributed.init_process_group(backend='nccl',
init_method=args.init_method,
world_size=args.world_size,
rank=args.global_rank,
group_name='mtorch'
)
print('using GPU {}-{} for training'.format(
int(args.global_rank), int(args.local_rank)
))
if args.wandb:
if args.local_rank == args.enable_GPUs_id[0]:
wandb_init()
else:
if args.wandb:
wandb_init()
if torch.cuda.is_available():
args.device = torch.device("cuda:{}".format(args.local_rank))
else:
args.device = 'cpu'
Eval(args)
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="EchoNet")
parser.add_argument('--latent-dim', type=int, default=64, help='Latent dimension n_z (default: 256)')
parser.add_argument('--image-size', type=tuple, default=(128, 128, 16), help='Image height and width (default: (112, 112 ,16))')
parser.add_argument('--image-channels', type=int, default=1, help='Number of channels of images (default: 3)')
parser.add_argument('--patch-size', type=int, default=(16, 16, 16), help='Patch height and width (default: 8)')
parser.add_argument('--blurring', type=bool, default=False, help='Whether blur the image')
parser.add_argument('--max_sample_rate', type=int, default=1, help='The sampling rate for the video')
parser.add_argument('--num-heads', type=int, default=8, help='The number of head of multiscale attention (default: 8)')
parser.add_argument('--num-layers', type=int, default=2, help='The number of transformer layers')
parser.add_argument('--mask-size', type=int, default=8, help='The size of mask patch (default: 16)')
parser.add_argument('--mask-ratio', type=float, default=0.7, help='The ratio of masking area in an image (default: 0.75)')
parser.add_argument('--selected-view', type=list, default=['4'], help='The selected view from dataset')
parser.add_argument('--dataset-path', type=str, default='/home/jyangcu/Dataset/PH_HK_image', help='Path to data (default: /data)')
parser.add_argument('--batch-size', type=int, default=1, help='Input batch size for training (default: 6)')
parser.add_argument('--epochs', type=int, default=150, help='Number of epochs to train (default: 50)')
parser.add_argument('--learning-rate', type=float, default=5e-4, help='Learning rate (default: 0.0002)')
parser.add_argument('--beta1', type=float, default=0.9, help='Adam beta param (default: 0.0)')
parser.add_argument('--beta2', type=float, default=0.99, help='Adam beta param (default: 0.999)')
parser.add_argument('--clip-grad', type=bool, default=True, help='perform gradient clipping in training (default: False)')
parser.add_argument('--enable_GPUs_id', type=list, default=[1], help='The number and order of the enable gpus')
parser.add_argument('--wandb', type=bool, default=False, help='Enable Wandb')
args = parser.parse_args()
# setting distributed configurations
# args.world_size = 1
args.world_size = len(args.enable_GPUs_id)
args.init_method = f"tcp://{get_master_ip()}:{23455}"
args.distributed = True if args.world_size > 1 else False
# setup distributed parallel training environments
if get_master_ip() == "127.0.0.1" and args.distributed:
# manually launch distributed processes
torch.multiprocessing.spawn(main, nprocs=args.world_size, args=(args,))
else:
# multiple processes have been launched by openmpi
args.local_rank = args.enable_GPUs_id[0]
args.global_rank = args.enable_GPUs_id[0]
main(args.local_rank, args)