From 3af0abcb17a20210ddd04d2c7e212a024ea0fedc Mon Sep 17 00:00:00 2001 From: Xiaolong Liu Date: Mon, 31 Oct 2022 17:41:08 +0800 Subject: [PATCH] Update README.md --- README.md | 10 +++++----- 1 file changed, 5 insertions(+), 5 deletions(-) diff --git a/README.md b/README.md index 6680dc7..26bd595 100644 --- a/README.md +++ b/README.md @@ -4,8 +4,8 @@ By [Xiaolong Liu](https://github.com/xlliu7), [Qimeng Wang](https://scholar.google.com/citations?user=hi7AeE8AAAAJ), [Yao Hu](https://scholar.google.com/citations?user=LIu7k7wAAAAJ), [Xu Tang](https://scholar.google.com/citations?user=grP24aAAAAAJ), [Shiwei Zhang](https://scholar.google.com/citations?user=ZO3OQ-8AAAAJ), [Song Bai](http://songbai.site), [Xiang Bai](https://scholar.google.com/citations?user=UeltiQ4AAAAJ). -This repo holds the code for TadTR, described in the technical report: -[End-to-end temporal action detection with Transformer](https://arxiv.org/abs/2106.10271). +This repo holds the code for TadTR, described in the paper +[End-to-end temporal action detection with Transformer](https://arxiv.org/abs/2106.10271) published in IEEE Transactions on Image Processing (TIP) 2022. @@ -45,7 +45,7 @@ TadTR is an end-to-end Temporal Action Detection TRansformer. It has the followi - [x] add model code - [x] add inference code - [x] add training code -- [ ] support training/inference with video input +- [x] support training/inference with video input. See [E2E-TAD][e2e-tad] ## Main Results - HACS Segments @@ -123,7 +123,7 @@ After downloading is finished, extract the archived feature files inplace by `cd ``` -## 2.Test Pre-trained Models +## 2.Testing Pre-trained Models Run ``` python main.py --cfg CFG_PATH --eval --resume CKPT_PATH @@ -169,6 +169,6 @@ The code is based on the [DETR](https://github.com/facebookresearch/detr) and [D ## Contact -For questions and suggestions, please contact Xiaolong Liu at "liuxl at hust dot edu dot cn". +For questions and suggestions, please contact Xiaolong Liu by email ("liuxl at hust dot edu dot cn"). [e2e-tad]: https://github.com/xlliu7/E2E-TAD