-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdata.py
321 lines (261 loc) · 13.3 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import torch
import numpy as np
import random
import os
import json
from scipy.signal import resample
import clip
from torch.utils.data import Dataset
class CLIPDataset(Dataset):
def __init__(self, args):
imu_dirs = [
f'{args.data_path}/sim/',
]
text_dirs = [
f'{args.data_path}/aug_texts/',
]
self.paths = []
for imu_dir, text_dir in zip(imu_dirs, text_dirs):
imu_files = [f.split('.')[0] for f in os.listdir(imu_dir) if os.path.isfile(os.path.join(imu_dir, f))]
text_files = [f.split('.')[0] for f in os.listdir(text_dir) if os.path.isfile(os.path.join(text_dir, f))]
common_files = [f for f in imu_files if f in text_files]
for f in common_files:
self.paths.append((os.path.join(imu_dir, f + '.npy'), os.path.join(text_dir, f + '.txt')))
self.args = args
if args.sample < 1:
self.paths = random.sample(self.paths, int(len(self.paths) * args.sample))
def __len__(self):
return len(self.paths)
def __getitem__(self, idx):
# load imu
imu_path, text_path = self.paths[idx]
imu = np.load(imu_path)
imu[np.isnan(imu)] = 0
# padding
if len(imu) < self.args.padding_size:
imu = np.pad(imu, ((0, self.args.padding_size - len(imu)), (0, 0), (0, 0)), mode='wrap')
imu = imu[:self.args.padding_size]
# random masking
mask = np.zeros_like(imu)
k = np.random.randint(1, 6) # randomly select k joints
selected_joints = np.random.choice(22, k, replace=False)
mask[:,selected_joints] = 1
imu = imu.reshape(len(imu), -1)
mask = mask.reshape(len(mask), -1)
# load text
with open(text_path, 'r') as file:
lines = file.readlines()
text = random.choice(lines).split('#')[0].strip() # remove the comment starting from "#"
batch = {}
batch['imu'] = imu
batch['text'] = text
batch['mask'] = mask
return batch
def select_samples(data, masks, labels, k, name, data_path):
unique_labels = torch.unique(labels)
selected_data = []
selected_masks = []
selected_labels = []
all_indices = torch.load(f'{data_path}/few_shot_data_2/{name}_k={k}.pth')
for i, label in enumerate(unique_labels):
selected_indices = all_indices[i]
selected_data.append(data[selected_indices])
selected_masks.append(masks[selected_indices])
selected_labels.append(labels[selected_indices])
selected_data = torch.cat(selected_data, dim=0)
selected_masks = torch.cat(selected_masks, dim=0)
selected_labels = torch.cat(selected_labels, dim=0)
return selected_data, selected_masks, selected_labels
def load(dataset, padding_size, data_path, split='test', k=None):
print(dataset)
X = np.load(f'{data_path}/{dataset}/X_{split}.npy')
real_labels = torch.from_numpy(np.load(f'{data_path}/{dataset}/y_{split}.npy'))
with open(f'{data_path}/{dataset}/{dataset}.json', 'r') as file:
data = json.load(file)
all_X = np.zeros((X.shape[0], X.shape[1], 22, 6))
if dataset == 'PAMAP':
all_X[:,:,21] = np.concatenate((X[:,:,0:3], X[:,:,3:6]), axis=-1)
all_X[:,:,11] = np.concatenate((X[:,:,18:21], X[:,:,21:24]), axis=-1)
all_X[:,:,7] = np.concatenate((X[:,:,9:12], X[:,:,12:15]), axis=-1)
original_sampling_rate = 100
num_classes = 12
elif dataset == 'USCHAD':
all_X[:,:,5] = np.concatenate((X[:,:,0:3] * 9.80665, X[:,:,3:6] / 180 * np.pi), axis=-1)
original_sampling_rate = 100
num_classes = 12
elif dataset == 'UCIHAR':
all_X[:,:,9] = np.concatenate((X[:,:,6:9] * 9.80665, X[:,:,3:6]), axis=-1) # linear accel, gyro, total accel
original_sampling_rate = 50
num_classes = 6
elif dataset == 'Opp_g':
all_X[:,:,10] = np.concatenate((X[:,:,0:3] / 1000 * 9.8, X[:,:,3:6] / 1000), axis=-1) # convert unit from milli g to m/s^2
all_X[:,:,19] = np.concatenate((X[:,:,9:12] / 1000 * 9.8, X[:,:,12:15] / 1000), axis=-1)
all_X[:,:,20] = np.concatenate((X[:,:,18:21] / 1000 * 9.8, X[:,:,21:24] / 1000), axis=-1)
all_X[:,:,15] = np.concatenate((X[:,:,27:30] / 1000 * 9.8, X[:,:,30:33] / 1000), axis=-1)
all_X[:,:,16] = np.concatenate((X[:,:,36:39] / 1000 * 9.8, X[:,:,39:42] / 1000), axis=-1)
original_sampling_rate = 30
num_classes = 4 # locomotion
elif dataset == 'WISDM':
all_X[:,:,21] = np.concatenate((X[:,:,0:3], X[:,:,3:6]), axis=-1)
original_sampling_rate = 20
num_classes = 18
elif dataset == 'DSADS':
all_X[:,:,11] = np.concatenate((X[:,:,0:3], X[:,:,3:6]), axis=-1)
all_X[:,:,21] = np.concatenate((X[:,:,9:12], X[:,:,12:15]), axis=-1)
all_X[:,:,17] = np.concatenate((X[:,:,18:21], X[:,:,21:24]), axis=-1)
all_X[:,:,6] = np.concatenate((X[:,:,27:30], X[:,:,30:33]), axis=-1)
all_X[:,:,2] = np.concatenate((X[:,:,36:39], X[:,:,39:42]), axis=-1)
original_sampling_rate = 25
num_classes = 19
elif dataset == 'Harth':
all_X[:,:,9,:3] = X[:,:,:3] * 9.80665
all_X[:,:,6,:3] = X[:,:,3:6] * 9.80665
original_sampling_rate = 50
num_classes = 12
elif dataset == 'Wharf':
X = -14.709 + X / 63 * (2 * 14.709)
all_X[:,:,21,:3] = X
original_sampling_rate = 32
num_classes = 14
elif dataset == 'Mhealth':
all_X[:,:,11,:3] = X[:,:,0:3]
all_X[:,:,3] = np.concatenate((X[:,:,6:9], X[:,:,9:12] / 180 * np.pi), axis=-1)
all_X[:,:,21] = np.concatenate((X[:,:,15:18], X[:,:,18:21] / 180 * np.pi), axis=-1)
original_sampling_rate = 50
num_classes = 12
elif dataset == 'UTD-MHAD':
all_X[real_labels < 21,:,21,:] = np.concatenate((X[real_labels < 21,:,0:3] * 9.80665, X[real_labels < 21,:,3:6] / 180 * np.pi), axis=-1)
all_X[real_labels >= 21,:,5,:] = np.concatenate((X[real_labels >= 21,:,0:3] * 9.80665, X[real_labels >= 21,:,3:6] / 180 * np.pi), axis=-1)
original_sampling_rate = 50
num_classes = 27
elif dataset == 'MotionSense':
all_X[:,:,5] = np.concatenate((X[:,:,:3] * 9.80665, X[:,:,3:6]), axis=-1)
all_X[:,:,1] = np.concatenate((X[:,:,:3] * 9.80665, X[:,:,3:6]), axis=-1)
original_sampling_rate = 50
num_classes = 6
elif dataset == 'w-HAR':
all_X[:,:,7] = np.concatenate((X[:,:,:3] * 9.80665, X[:,:,3:6] / 180 * np.pi), axis=-1)
original_sampling_rate = 250
num_classes = 7
elif dataset == 'Shoaib':
all_X[:,:,1] = X[:,:,:6]
all_X[:,:,5] = X[:,:,6:12]
all_X[:,:,21] = X[:,:,12:18]
all_X[:,:,20] = X[:,:,18:24]
all_X[:,:,0] = X[:,:,24:30]
original_sampling_rate = 50
num_classes = 7
elif dataset == 'har70plus':
all_X[:,:,0,:3] = X[:,:,:3] * 9.80665
all_X[:,:,5,:3] = X[:,:,3:6] * 9.80665
original_sampling_rate = 50
num_classes = 7
elif dataset == 'MMAct':
all_X[:,:,5] = np.concatenate((X[:,:,:3], X[:,:,3:6]), axis=-1)
all_X[:,:,21,:3] = X[:,:,6:9]
original_sampling_rate = 50
num_classes = 35
elif dataset == 'realworld':
all_X[:,:,14] = np.concatenate((X[:,:,:3], X[:,:,3:6]), axis=-1)
all_X[:,:,16] = np.concatenate((X[:,:,6:9], X[:,:,9:12]), axis=-1)
all_X[:,:,13] = np.concatenate((X[:,:,12:15], X[:,:,15:18]), axis=-1)
all_X[:,:,3] = np.concatenate((X[:,:,18:21], X[:,:,21:24]), axis=-1)
all_X[:,:,1] = np.concatenate((X[:,:,24:27], X[:,:,27:30]), axis=-1)
all_X[:,:,15] = np.concatenate((X[:,:,30:33], X[:,:,33:36]), axis=-1)
all_X[:,:,9] = np.concatenate((X[:,:,36:39], X[:,:,39:42]), axis=-1)
original_sampling_rate = 50
num_classes = 8
elif dataset == 'TNDA-HAR':
all_X[:,:,20] = np.concatenate((X[:,:,:3], X[:,:,3:6]), axis=-1)
all_X[:,:,2] = np.concatenate((X[:,:,6:9], X[:,:,9:12]), axis=-1)
all_X[:,:,21] = np.concatenate((X[:,:,12:15], X[:,:,15:18]), axis=-1)
all_X[:,:,3] = np.concatenate((X[:,:,18:21], X[:,:,21:24]), axis=-1)
all_X[:,:,11] = np.concatenate((X[:,:,24:27], X[:,:,27:30]), axis=-1)
original_sampling_rate = 50
num_classes = 8
elif dataset == 'ut-complex':
all_X[:,:,5] = np.concatenate((X[:,:,:3], X[:,:,3:6]), axis=-1)
all_X[:,:,21] = np.concatenate((X[:,:,6:9], X[:,:,9:12]), axis=-1)
original_sampling_rate = 50
num_classes = 13
all_X = all_X.reshape(all_X.shape[0], all_X.shape[1], 22 * 6)
# resample real data to 20 Hz
new_sampling_rate = 20
new_length = int((all_X.shape[1] / original_sampling_rate) * new_sampling_rate)
resampled_data = np.array([resample(sequence, new_length) for sequence in all_X])
# pad real data to args.padding_size
masks = np.ones_like(resampled_data)
if resampled_data.shape[1] < padding_size:
resampled_data = np.pad(resampled_data, ((0, 0), (0, padding_size - resampled_data.shape[1]), (0, 0)), 'wrap') # N, 200, 6
masks = np.pad(masks, ((0, 0), (0, padding_size - masks.shape[1]), (0, 0)), 'constant') # N, 200, 6
real_inputs = torch.from_numpy(resampled_data[:,:padding_size,:]).float()
real_masks = torch.from_numpy(masks[:,:padding_size,:]).float()
if split == 'train' and k and k < len(real_inputs):
real_inputs, real_masks, real_labels = select_samples(real_inputs, real_masks, real_labels, k, dataset, data_path)
print(real_inputs.shape, real_labels.shape)
# load text
label_dictionary = data['label_dictionary']
label_list = [' '.join(labels) for labels in label_dictionary.values()]
all_text = clip.tokenize(label_list).cuda()
return real_inputs, real_masks, real_labels, label_list, all_text, num_classes
def load_multiple(dataset_list, padding_size, data_path, split='test', k=None):
real_inputs_list, real_masks_list, real_labels_list, label_list_list, all_text_list, num_classes_list = [], [], [], [], [], []
for dataset in dataset_list:
real_inputs, real_masks, real_labels, label_list, all_text, num_classes = load(dataset, padding_size, data_path, split, k)
real_inputs_list.append(real_inputs)
real_masks_list.append(real_masks)
real_labels_list.append(real_labels)
label_list_list.append(label_list)
all_text_list.append(all_text)
num_classes_list.append(num_classes)
return real_inputs_list, real_masks_list, real_labels_list, label_list_list, all_text_list, num_classes_list
def load_custom_data(X_path, y_path, config_path, joint_list, original_sampling_rate, padding_size=200, split='test', k=None, few_shot_path=None):
X = np.load(X_path)
real_labels = torch.from_numpy(np.load(y_path))
with open(config_path, 'r') as file:
data = json.load(file)
all_X = np.zeros((X.shape[0], X.shape[1], 22, 6))
for i, joint in enumerate(joint_list):
all_X[:,:,joint] = np.concatenate((X[:,:,6*i:6*i+3], X[:,:,6*i+3:6*i+6]), axis=-1)
all_X = all_X.reshape(all_X.shape[0], all_X.shape[1], 22 * 6)
# resample real data to 20 Hz
new_sampling_rate = 20
new_length = int((all_X.shape[1] / original_sampling_rate) * new_sampling_rate)
resampled_data = np.array([resample(sequence, new_length) for sequence in all_X])
# pad real data to args.padding_size
masks = np.ones_like(resampled_data)
if resampled_data.shape[1] < padding_size:
resampled_data = np.pad(resampled_data, ((0, 0), (0, padding_size - resampled_data.shape[1]), (0, 0)), 'wrap') # N, 200, 6
masks = np.pad(masks, ((0, 0), (0, padding_size - masks.shape[1]), (0, 0)), 'constant') # N, 200, 6
real_inputs = torch.from_numpy(resampled_data[:,:padding_size,:]).float()
real_masks = torch.from_numpy(masks[:,:padding_size,:]).float()
if split == 'train' and k and k < len(real_inputs):
unique_labels = torch.unique(real_labels)
if few_shot_path is None:
print('Generating few shot indices ...')
all_indices = []
for i, label in enumerate(unique_labels):
indices = torch.where(real_labels == label)[0]
selected_indices = indices[torch.randperm(len(indices))[:k]]
all_indices.append(selected_indices)
else:
print('Loading existing few shot indices ...')
all_indices = torch.load(few_shot_path)
selected_data = []
selected_masks = []
selected_labels = []
for i, label in enumerate(unique_labels):
selected_indices = all_indices[i]
selected_data.append(real_inputs[selected_indices])
selected_masks.append(real_masks[selected_indices])
selected_labels.append(real_labels[selected_indices])
selected_data = torch.cat(selected_data, dim=0)
selected_masks = torch.cat(selected_masks, dim=0)
selected_labels = torch.cat(selected_labels, dim=0)
real_inputs, real_masks, real_labels = selected_data, selected_masks, selected_labels
print(real_inputs.shape, real_labels.shape)
# load text
label_dictionary = data['label_dictionary']
label_list = [' '.join(labels) for labels in label_dictionary.values()]
all_text = clip.tokenize(label_list).cuda()
return real_inputs, real_masks, real_labels, label_list, all_text