-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmetric.py
102 lines (89 loc) · 3.46 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
from sklearn.metrics import v_measure_score, adjusted_rand_score, accuracy_score
from sklearn.cluster import KMeans
from scipy.optimize import linear_sum_assignment
from torch.utils.data import DataLoader
import numpy as np
import torch
def cluster_acc(y_true, y_pred):
y_true = y_true.astype(np.int64)
assert y_pred.size == y_true.size
D = max(y_pred.max(), y_true.max()) + 1
w = np.zeros((D, D), dtype=np.int64)
for i in range(y_pred.size):
w[y_pred[i], y_true[i]] += 1
u = linear_sum_assignment(w.max() - w)
ind = np.concatenate([u[0].reshape(u[0].shape[0], 1), u[1].reshape([u[0].shape[0], 1])], axis=1)
return sum([w[i, j] for i, j in ind]) * 1.0 / y_pred.size
def purity(y_true, y_pred):
y_voted_labels = np.zeros(y_true.shape)
labels = np.unique(y_true)
ordered_labels = np.arange(labels.shape[0])
for k in range(labels.shape[0]):
y_true[y_true == labels[k]] = ordered_labels[k]
labels = np.unique(y_true)
bins = np.concatenate((labels, [np.max(labels)+1]), axis=0)
for cluster in np.unique(y_pred):
hist, _ = np.histogram(y_true[y_pred == cluster], bins=bins)
winner = np.argmax(hist)
y_voted_labels[y_pred == cluster] = winner
return accuracy_score(y_true, y_voted_labels)
def evaluate(label, pred):
nmi = v_measure_score(label, pred)
ari = adjusted_rand_score(label, pred)
acc = cluster_acc(label, pred)
pur = purity(label, pred)
return nmi, ari, acc, pur
def inference(loader, model, device, view, data_size):
"""
:return:
total_pred: prediction among all modalities
pred_vectors: predictions of each modality, list
labels_vector: true label
Hs: high-level features
Zs: low-level features
"""
model.eval()
soft_vector = []
pred_vectors = []
Hs = []
Zs = []
for v in range(view):
pred_vectors.append([])
Hs.append([])
Zs.append([])
labels_vector = []
for step, (xs, y, _) in enumerate(loader):
for v in range(view):
xs[v] = xs[v].to(device)
with torch.no_grad():
qs, preds, cat_pre = model.forward_cluster(xs)
hs, _, _, zs = model.forward(xs)
q = sum(qs)/view
for v in range(view):
hs[v] = hs[v].detach()
zs[v] = zs[v].detach()
preds[v] = preds[v].detach()
pred_vectors[v].extend(preds[v].cpu().detach().numpy())
Hs[v].extend(hs[v].cpu().detach().numpy())
Zs[v].extend(zs[v].cpu().detach().numpy())
# pres = preds.detach()
q = q.detach()
soft_vector.extend(q.cpu().detach().numpy())
labels_vector.extend(y.numpy())
labels_vector = np.array(labels_vector).reshape(data_size)
total_pred = np.argmax(np.array(soft_vector), axis=1)
for v in range(view):
Hs[v] = np.array(Hs[v])
Zs[v] = np.array(Zs[v])
pred_vectors[v] = np.array(pred_vectors[v])
return total_pred, pred_vectors, Hs, labels_vector, Zs
def valid(model, device, dataset, view, data_size, class_num, eval_h=False):
test_loader = DataLoader(
dataset,
batch_size=256,
shuffle=False,
)
total_pred, pred_vectors, high_level_vectors, labels_vector, low_level_vectors = inference(test_loader, model, device, view, data_size)
nmi, ari, acc, pur = evaluate(labels_vector, total_pred)
print('ACC = {:.4f} NMI = {:.4f} PUR={:.4f}'.format(acc, nmi, pur))
return acc, nmi, pur, ari