-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
399 lines (335 loc) · 12.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
import torch
import random
import numpy as np
import pickle as pkl
import networkx as nx
import scipy.sparse as sp
from sklearn import metrics
from munkres import Munkres
import matplotlib.pyplot as plt
from kmeans_gpu import kmeans
import sklearn.preprocessing as preprocess
from sklearn.metrics import adjusted_rand_score as ari_score
from sklearn.metrics import roc_auc_score, average_precision_score
from sklearn.metrics.cluster import normalized_mutual_info_score as nmi_score
def sample_mask(idx, l):
"""Create mask."""
mask = np.zeros(l)
mask[idx] = 1
return np.array(mask, dtype=np.bool)
def load_data(dataset):
# load the data: x, tx, allx, graph
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
if dataset == 'wiki':
adj, features, label = load_wiki()
return adj, features, label, 0, 0, 0
for i in range(len(names)):
'''
fix Pickle incompatibility of numpy arrays between Python 2 and 3
https://stackoverflow.com/questions/11305790/pickle-incompatibility-of-numpy-arrays-between-python-2-and-3
'''
with open("data/ind.{}.{}".format(dataset, names[i]), 'rb') as rf:
u = pkl._Unpickler(rf)
u.encoding = 'latin1'
cur_data = u.load()
objects.append(cur_data)
# objects.append(
# pkl.load(open("data/ind.{}.{}".format(dataset, names[i]), 'rb')))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file(
"data/ind.{}.test.index".format(dataset))
test_idx_range = np.sort(test_idx_reorder)
if dataset == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(
min(test_idx_reorder), max(test_idx_reorder) + 1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range - min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range - min(test_idx_range), :] = ty
ty = ty_extended
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
features = torch.FloatTensor(np.array(features.todense()))
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
idx_test = test_idx_range.tolist()
idx_train = range(len(y))
idx_val = range(len(y), len(y) + 500)
train_mask = sample_mask(idx_train, labels.shape[0])
val_mask = sample_mask(idx_val, labels.shape[0])
test_mask = sample_mask(idx_test, labels.shape[0])
y_train = np.zeros(labels.shape)
y_val = np.zeros(labels.shape)
y_test = np.zeros(labels.shape)
y_train[train_mask, :] = labels[train_mask, :]
y_val[val_mask, :] = labels[val_mask, :]
y_test[test_mask, :] = labels[test_mask, :]
return adj, features, np.argmax(labels, 1), idx_train, idx_val, idx_test
def load_wiki():
f = open('data/graph.txt', 'r')
adj, xind, yind = [], [], []
for line in f.readlines():
line = line.split()
xind.append(int(line[0]))
yind.append(int(line[1]))
adj.append([int(line[0]), int(line[1])])
f.close()
##print(len(adj))
f = open('data/group.txt', 'r')
label = []
for line in f.readlines():
line = line.split()
label.append(int(line[1]))
f.close()
f = open('data/tfidf.txt', 'r')
fea_idx = []
fea = []
adj = np.array(adj)
adj = np.vstack((adj, adj[:, [1, 0]]))
adj = np.unique(adj, axis=0)
labelset = np.unique(label)
labeldict = dict(zip(labelset, range(len(labelset))))
label = np.array([labeldict[x] for x in label])
adj = sp.csr_matrix((np.ones(len(adj)), (adj[:, 0], adj[:, 1])), shape=(len(label), len(label)))
for line in f.readlines():
line = line.split()
fea_idx.append([int(line[0]), int(line[1])])
fea.append(float(line[2]))
f.close()
fea_idx = np.array(fea_idx)
features = sp.csr_matrix((fea, (fea_idx[:, 0], fea_idx[:, 1])), shape=(len(label), 4973)).toarray()
scaler = preprocess.MinMaxScaler()
# features = preprocess.normalize(features, norm='l2')
features = scaler.fit_transform(features)
features = torch.FloatTensor(features)
return adj, features, label
def parse_index_file(filename):
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def sparse_to_tuple(sparse_mx):
if not sp.isspmatrix_coo(sparse_mx):
sparse_mx = sparse_mx.tocoo()
coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose()
values = sparse_mx.data
shape = sparse_mx.shape
return coords, values, shape
def decompose(adj, dataset, norm='sym', renorm=True):
adj = sp.coo_matrix(adj)
ident = sp.eye(adj.shape[0])
if renorm:
adj_ = adj + ident
else:
adj_ = adj
rowsum = np.array(adj_.sum(1))
if norm == 'sym':
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
laplacian = ident - adj_normalized
evalue, evector = np.linalg.eig(laplacian.toarray())
np.save(dataset + ".npy", evalue)
print(max(evalue))
exit(1)
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
n, bins, patches = ax.hist(evalue, 50, facecolor='g')
plt.xlabel('Eigenvalues')
plt.ylabel('Frequncy')
fig.savefig("eig_renorm_" + dataset + ".png")
def preprocess_graph(adj, layer, norm='sym', renorm=True):
adj = sp.coo_matrix(adj)
ident = sp.eye(adj.shape[0])
if renorm:
adj_ = adj + ident
else:
adj_ = adj
rowsum = np.array(adj_.sum(1))
if norm == 'sym':
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -0.5).flatten())
adj_normalized = adj_.dot(degree_mat_inv_sqrt).transpose().dot(degree_mat_inv_sqrt).tocoo()
laplacian = ident - adj_normalized
elif norm == 'left':
degree_mat_inv_sqrt = sp.diags(np.power(rowsum, -1.).flatten())
adj_normalized = degree_mat_inv_sqrt.dot(adj_).tocoo()
laplacian = ident - adj_normalized
# reg = [2 / 3] * (layer)
reg = [1] * (layer)
adjs = []
for i in range(len(reg)):
adjs.append(ident - (reg[i] * laplacian))
return adjs
def laplacian(adj):
rowsum = np.array(adj.sum(1))
degree_mat = sp.diags(rowsum.flatten())
lap = degree_mat - adj
return torch.FloatTensor(lap.toarray())
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
def get_roc_score(emb, adj_orig, edges_pos, edges_neg):
def sigmoid(x):
return 1 / (1 + np.exp(-x))
# Predict on test set of edges
adj_rec = np.dot(emb, emb.T)
preds = []
pos = []
for e in edges_pos:
preds.append(sigmoid(adj_rec[e[0], e[1]]))
pos.append(adj_orig[e[0], e[1]])
preds_neg = []
neg = []
for e in edges_neg:
preds_neg.append(sigmoid(adj_rec[e[0], e[1]]))
neg.append(adj_orig[e[0], e[1]])
preds_all = np.hstack([preds, preds_neg])
labels_all = np.hstack([np.ones(len(preds)), np.zeros(len(preds))])
roc_score = roc_auc_score(labels_all, preds_all)
ap_score = average_precision_score(labels_all, preds_all)
return roc_score, ap_score
def cluster_acc(y_true, y_pred):
"""
calculate clustering acc and f1-score
Args:
y_true: the ground truth
y_pred: the clustering id
Returns: acc and f1-score
"""
y_true = y_true - np.min(y_true)
l1 = list(set(y_true))
num_class1 = len(l1)
l2 = list(set(y_pred))
num_class2 = len(l2)
ind = 0
if num_class1 != num_class2:
for i in l1:
if i in l2:
pass
else:
y_pred[ind] = i
ind += 1
l2 = list(set(y_pred))
numclass2 = len(l2)
if num_class1 != numclass2:
print('error')
return
cost = np.zeros((num_class1, numclass2), dtype=int)
for i, c1 in enumerate(l1):
mps = [i1 for i1, e1 in enumerate(y_true) if e1 == c1]
for j, c2 in enumerate(l2):
mps_d = [i1 for i1 in mps if y_pred[i1] == c2]
cost[i][j] = len(mps_d)
m = Munkres()
cost = cost.__neg__().tolist()
indexes = m.compute(cost)
new_predict = np.zeros(len(y_pred))
for i, c in enumerate(l1):
c2 = l2[indexes[i][1]]
ai = [ind for ind, elm in enumerate(y_pred) if elm == c2]
new_predict[ai] = c
acc = metrics.accuracy_score(y_true, new_predict)
f1_macro = metrics.f1_score(y_true, new_predict, average='macro')
return acc, f1_macro
def eva(y_true, y_pred, show_details=True):
"""
evaluate the clustering performance
Args:
y_true: the ground truth
y_pred: the predicted label
show_details: if print the details
Returns: None
"""
acc, f1 = cluster_acc(y_true, y_pred)
nmi = nmi_score(y_true, y_pred, average_method='arithmetic')
ari = ari_score(y_true, y_pred)
if show_details:
print(':acc {:.4f}'.format(acc), ', nmi {:.4f}'.format(nmi), ', ari {:.4f}'.format(ari),
', f1 {:.4f}'.format(f1))
return acc, nmi, ari, f1
def load_graph_data(dataset_name, show_details=False):
"""
load graph data
:param dataset_name: the name of the dataset
:param show_details: if show the details of dataset
- dataset name
- features' shape
- labels' shape
- adj shape
- edge num
- category num
- category distribution
:return: the features, labels and adj
"""
load_path = "dataset/" + dataset_name + "/" + dataset_name
feat = np.load(load_path+"_feat.npy", allow_pickle=True)
label = np.load(load_path+"_label.npy", allow_pickle=True)
adj = np.load(load_path+"_adj.npy", allow_pickle=True)
if show_details:
print("++++++++++++++++++++++++++++++")
print("---details of graph dataset---")
print("++++++++++++++++++++++++++++++")
print("dataset name: ", dataset_name)
print("feature shape: ", feat.shape)
print("label shape: ", label.shape)
print("adj shape: ", adj.shape)
print("undirected edge num: ", int(np.nonzero(adj)[0].shape[0]/2))
print("category num: ", max(label)-min(label)+1)
print("category distribution: ")
for i in range(max(label)+1):
print("label", i, end=":")
print(len(label[np.where(label == i)]))
print("++++++++++++++++++++++++++++++")
return feat, label, adj
def normalize_adj(adj, self_loop=True, symmetry=False):
"""
normalize the adj matrix
:param adj: input adj matrix
:param self_loop: if add the self loop or not
:param symmetry: symmetry normalize or not
:return: the normalized adj matrix
"""
# add the self_loop
if self_loop:
adj_tmp = adj + np.eye(adj.shape[0])
else:
adj_tmp = adj
# calculate degree matrix and it's inverse matrix
d = np.diag(adj_tmp.sum(0))
d_inv = np.linalg.inv(d)
# symmetry normalize: D^{-0.5} A D^{-0.5}
if symmetry:
sqrt_d_inv = np.sqrt(d_inv)
norm_adj = np.matmul(np.matmul(sqrt_d_inv, adj_tmp), adj_tmp)
# non-symmetry normalize: D^{-1} A
else:
norm_adj = np.matmul(d_inv, adj_tmp)
return norm_adj
def setup_seed(seed):
"""
setup random seed to fix the result
Args:
seed: random seed
Returns: None
"""
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
torch.manual_seed(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
def clustering(feature, true_labels, cluster_num):
predict_labels, dis, initial = kmeans(X=feature, num_clusters=cluster_num, distance="euclidean", device="cuda")
acc, nmi, ari, f1 = eva(true_labels, predict_labels.numpy(), show_details=False)
return 100 * acc, 100 * nmi, 100 * ari, 100 * f1, predict_labels.numpy(),dis