forked from spatialmodel/inmap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
vargrid.go
1369 lines (1248 loc) · 42.9 KB
/
vargrid.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
/*
Copyright © 2013 the InMAP authors.
This file is part of InMAP.
InMAP is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
InMAP is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with InMAP. If not, see <http://www.gnu.org/licenses/>.
*/
package inmap
import (
"errors"
"fmt"
"io"
"math"
"os"
"path/filepath"
"runtime"
"sort"
"strconv"
"strings"
"time"
"github.com/ctessum/cdf"
"github.com/ctessum/sparse"
"github.com/spatialmodel/inmap/emissions/aep"
"github.com/ctessum/geom"
"github.com/ctessum/geom/encoding/shp"
"github.com/ctessum/geom/index/rtree"
"github.com/ctessum/geom/proj"
"gonum.org/v1/gonum/floats"
)
// VarGridConfig is a holder for the configuration information for creating a
// variable-resolution grid.
type VarGridConfig struct {
VariableGridXo float64 // lower left of output grid, x
VariableGridYo float64 // lower left of output grid, y
VariableGridDx float64 // m
VariableGridDy float64 // m
Xnests []int // Nesting multiples in the X direction
Ynests []int // Nesting multiples in the Y direction
HiResLayers int // number of layers to do in high resolution (layers above this will be lowest resolution.
PopDensityThreshold float64 // limit for people per unit area in the grid cell
PopThreshold float64 // limit for total number of people in the grid cell
// PopConcThreshold is the limit for
// Σ(|ΔConcentration|)*combinedVolume*|ΔPopulation| / {Σ(|totalMass|)*totalPopulation}.
// See the documentation for PopConcMutator for more information.
PopConcThreshold float64
CensusFile string // Path to census shapefile or COARDS-compliant NetCDF file
CensusPopColumns []string // Shapefile fields containing populations for multiple demographics
PopGridColumn string // Name of field in shapefile to be used for determining variable grid resolution
MortalityRateFile string // Path to the mortality rate shapefile
// MortalityRateColumns give the columns in the mortality rate
// shapefile containing mortality rates, and the population groups that
// should be used for population-weighting each mortality rate.
MortalityRateColumns map[string]string
GridProj string // projection info for CTM grid; Proj4 format
}
func (c *VarGridConfig) bounds() *geom.Bounds {
return &geom.Bounds{
Min: geom.Point{X: c.VariableGridXo, Y: c.VariableGridYo},
Max: geom.Point{
X: c.VariableGridXo + c.VariableGridDx*float64(c.Xnests[0]),
Y: c.VariableGridYo + c.VariableGridDy*float64(c.Ynests[0]),
},
}
}
// CTMData holds processed data from a chemical transport model
type CTMData struct {
gridTree *rtree.Rtree
xo float64 // lower left of Chemical Transport Model (CTM) grid, x
yo float64 // lower left of grid, y
dx float64 // m
dy float64 // m
nx int
ny int
// Data is a map of information about processed CTM variables,
// with the keys being the variable names.
Data map[string]struct {
Dims []string // netcdf dimensions for this variable
Description string // variable description
Units string // variable units
Data *sparse.DenseArray // variable data
}
}
// AddVariable adds data for a new variable to d.
func (d *CTMData) AddVariable(name string, dims []string, description, units string, data *sparse.DenseArray) {
if d.Data == nil {
d.Data = make(map[string]struct {
Dims []string
Description string
Units string
Data *sparse.DenseArray
})
}
d.Data[name] = struct {
Dims []string // netcdf dimensions for this variable
Description string // variable description
Units string // variable units
Data *sparse.DenseArray // variable data
}{
Dims: dims,
Description: description,
Units: units,
Data: data,
}
}
// LoadCTMData loads CTM data from a netcdf file.
func (config *VarGridConfig) LoadCTMData(rw cdf.ReaderWriterAt) (*CTMData, error) {
f, err := cdf.Open(rw)
if err != nil {
return nil, fmt.Errorf("inmap.LoadCTMData: %v", err)
}
o := new(CTMData)
nz := f.Header.Lengths("UAvg")[0]
// Get CTM grid attributes
o.dx = f.Header.GetAttribute("", "dx").([]float64)[0]
o.dy = f.Header.GetAttribute("", "dy").([]float64)[0]
o.nx = int(f.Header.GetAttribute("", "nx").([]int32)[0])
o.ny = int(f.Header.GetAttribute("", "ny").([]int32)[0])
o.xo = f.Header.GetAttribute("", "x0").([]float64)[0]
o.yo = f.Header.GetAttribute("", "y0").([]float64)[0]
dataVersion := f.Header.GetAttribute("", "data_version").(string)
if dataVersion != InMAPDataVersion {
return nil, fmt.Errorf("inmap.LoadCTMData: data version %s is incompatible "+
"with the required version %s", dataVersion, InMAPDataVersion)
}
o.makeCTMgrid(nz)
od := make(map[string]struct {
Dims []string
Description string
Units string
Data *sparse.DenseArray
})
for _, v := range f.Header.Variables() {
d := struct {
Dims []string
Description string
Units string
Data *sparse.DenseArray
}{}
d.Description = f.Header.GetAttribute(v, "description").(string)
d.Units = f.Header.GetAttribute(v, "units").(string)
dims := f.Header.Lengths(v)
r := f.Reader(v, nil, nil)
d.Data = sparse.ZerosDense(dims...)
tmp := make([]float32, len(d.Data.Elements))
_, err = r.Read(tmp)
if err != nil {
return nil, fmt.Errorf("inmap.LoadCTMData: %v", err)
}
d.Dims = f.Header.Dimensions(v)
// Check that data matches dimensions.
n := 1
for _, v := range dims {
n *= v
}
if len(tmp) != n {
return nil, fmt.Errorf("inmap.VarGridConfig.LoadCTMData: dims are %d but "+
"array length is %d", n, len(tmp))
}
for i, v := range tmp {
d.Data.Elements[i] = float64(v)
}
od[v] = d
}
o.Data = od
return o, nil
}
// Write writes d to netcdf file w.
func (d *CTMData) Write(w *os.File) error {
windSpeed := d.Data["WindSpeed"].Data
uAvg := d.Data["UAvg"].Data
vAvg := d.Data["VAvg"].Data
wAvg := d.Data["WAvg"].Data
h := cdf.NewHeader(
[]string{"x", "y", "z", "xStagger", "yStagger", "zStagger"},
[]int{windSpeed.Shape[2], windSpeed.Shape[1], windSpeed.Shape[0],
uAvg.Shape[2], vAvg.Shape[1], wAvg.Shape[0]})
h.AddAttribute("", "comment", "InMAP meteorology and baseline chemistry data file")
h.AddAttribute("", "x0", []float64{d.xo})
h.AddAttribute("", "y0", []float64{d.yo})
h.AddAttribute("", "dx", []float64{d.dx})
h.AddAttribute("", "dy", []float64{d.dy})
h.AddAttribute("", "nx", []int32{int32(windSpeed.Shape[2])})
h.AddAttribute("", "ny", []int32{int32(windSpeed.Shape[1])})
h.AddAttribute("", "data_version", InMAPDataVersion)
// Sort the names so they write in the same order every time.
names := make([]string, 0, len(d.Data))
for n := range d.Data {
names = append(names, n)
}
sort.Strings(names)
for _, name := range names {
dd := d.Data[name]
h.AddVariable(name, dd.Dims, []float32{0})
h.AddAttribute(name, "description", dd.Description)
h.AddAttribute(name, "units", dd.Units)
}
h.Define()
f, err := cdf.Create(w, h) // writes the header to ff
if err != nil {
return err
}
for _, name := range names {
dd := d.Data[name]
if err = writeNCF(f, name, dd.Data); err != nil {
return fmt.Errorf("inmap: writing variable %s to netcdf file: %v", name, err)
}
}
err = cdf.UpdateNumRecs(w)
if err != nil {
return err
}
return nil
}
// CombineCTMData returns the combination of the input data nests.
// The output will have the extent of the first nest and the horizontal
// resolution of the highest resolution nest. It is assumed that
// the nests fit neatly inside each other; no interpolation will be
// performed. The input nests will be
// overlayed onto the output in the provided order, so each sequential
// nest will write over any previous nest(s) that it overlaps with.
// Vertical layers are assumed to be the same among all nests;
// no vertical layer interpolation is performed.
// If the nests do not all have the same number of layers, an
// error will be returned.
func CombineCTMData(nests ...*CTMData) (*CTMData, error) {
if len(nests) == 0 {
return nil, nil
}
o := new(CTMData)
// Get extent and resolution of resulting grid.
o.xo, o.yo = nests[0].xo, nests[0].yo
o.dx, o.dy = math.Inf(1), math.Inf(1)
var nz int
for i, nest := range nests {
if _, ok := nest.Data["Dz"]; !ok {
return nil, errors.New("inmap: CTM data is missing variable `Dz`")
}
nestNz := nest.Data["Dz"].Data.Shape[0]
if i == 0 {
nz = nestNz
} else if nz != nestNz {
return nil, errors.New("inmap: inconsistent number of layers when combining CTM data files")
}
if nest.dx < o.dx {
o.dx = nest.dx
}
if nest.dy < o.dy {
o.dy = nest.dy
}
}
o.nx = nests[0].nx * round(nests[0].dx/o.dx)
o.ny = nests[0].ny * round(nests[0].dy/o.dy)
// Copy data.
for _, nest := range nests {
xNestFac := round(nest.dx / o.dx) // nesting ratio in x-direction
yNestFac := round(nest.dy / o.dy) // nesting ratio in y-direction
nestio := round((nest.xo - o.xo) / o.dx) // x-index in output grid of nest ll corner.
nestjo := round((nest.yo - o.yo) / o.dy) // y-index in output grid of nest ll corner.
// Closure for copying one layer
copyLayer := func(get func(j, i int) float64, set func(v float64, j, i int)) {
for nj := 0; nj < nest.ny; nj++ {
for ni := 0; ni < nest.nx; ni++ {
v := get(nj, ni)
for oj := nestjo + nj*yNestFac; oj < nestjo+(nj+1)*yNestFac; oj++ {
for oi := nestio + ni*xNestFac; oi < nestio+(ni+1)*xNestFac; oi++ {
if oi >= 0 && oj >= 0 && oi < o.nx && oj < o.ny {
set(v, oj, oi)
}
}
}
}
}
}
for name, data := range nest.Data {
switch len(data.Dims) {
case 3:
if _, ok := o.Data[name]; !ok {
o.AddVariable(name, data.Dims, data.Description, data.Units, sparse.ZerosDense(nz, o.ny, o.nx))
}
od := o.Data[name]
for k := 0; k < nz; k++ {
get := func(j, i int) float64 { return data.Data.Get(k, j, i) }
set := func(v float64, j, i int) { od.Data.Set(v, k, j, i) }
copyLayer(get, set)
}
case 2:
if _, ok := o.Data[name]; !ok {
o.AddVariable(name, data.Dims, data.Description, data.Units, sparse.ZerosDense(o.ny, o.nx))
}
od := o.Data[name]
get := func(j, i int) float64 { return data.Data.Get(j, i) }
set := func(v float64, j, i int) { od.Data.Set(v, j, i) }
copyLayer(get, set)
default:
return nil, fmt.Errorf("inmap: invalid number of dimensions (%d) when combining CTM data", len(data.Dims))
}
}
}
return o, nil
}
func round(v float64) int { return int(v + 0.5) }
func writeNCF(f *cdf.File, Var string, data *sparse.DenseArray) error {
// Check that data matches dimensions.
n := 1
for _, v := range data.Shape {
n *= v
}
if len(data.Elements) != n {
return fmt.Errorf("dims are %d but "+"array length is %d", n, len(data.Elements))
}
data32 := make([]float32, len(data.Elements))
for i, e := range data.Elements {
data32[i] = float32(e)
}
end := f.Header.Lengths(Var)
start := make([]int, len(end))
w := f.Writer(Var, start, end)
_, err := w.Write(data32)
if err != nil {
return err
}
return nil
}
// Population is a holder for information about the human population in
// the model domain.
type Population struct {
tree func(*geom.Bounds) func() (*population, error)
}
// MortalityRates is a holder for information about the average human
// mortality rate (in units of deaths per 100,000 people per year) in the
// model domain.
type MortalityRates struct {
tree *rtree.Rtree
}
// PopIndices gives the array indices of each
// population type.
type PopIndices map[string]int
// MortIndices gives the array indices of each
// mortality rate.
type MortIndices map[string]int
// LoadPopMort loads the population and mortality rate data from the shapefiles
// specified in config.
func (config *VarGridConfig) LoadPopMort() (*Population, PopIndices, *MortalityRates, MortIndices, error) {
gridSR, err := proj.Parse(config.GridProj)
if err != nil {
return nil, nil, nil, nil, fmt.Errorf("inmap: while parsing GridProj: %v", err)
}
pop, popIndex, err := config.loadPopulation(gridSR, config.bounds())
if err != nil {
return nil, nil, nil, nil, fmt.Errorf("inmap: while loading population: %v", err)
}
mort, mortIndex, err := config.loadMortality(gridSR)
if err != nil {
return nil, nil, nil, nil, fmt.Errorf("inmap: while loading mortality rate: %v", err)
}
return &Population{tree: pop}, PopIndices(popIndex), &MortalityRates{tree: mort}, MortIndices(mortIndex), nil
}
// getCells returns all the grid cells in cellTree that are within box
// and at vertical layer layer.
func getCells(cellTree *rtree.Rtree, box *geom.Bounds, layer int) *cellList {
x := cellTree.SearchIntersect(box)
cells := new(cellList)
for _, xx := range x {
c := xx.(*Cell)
if c.Layer == layer {
cells.add(c)
}
}
return cells
}
func (config *VarGridConfig) webMapTrans() (t proj.Transformer, notMeters bool, err error) {
// webMapProj is the spatial reference definition for web mapping.
const webMapProj = "+proj=merc +a=6378137 +b=6378137 +lat_ts=0.0 +lon_0=0.0 +x_0=0.0 +y_0=0 +k=1.0 +units=m +nadgrids=@null +no_defs"
// webMapSR is the spatial reference for web mapping.
webMapSR, err := proj.Parse(webMapProj)
if err != nil {
return nil, false, fmt.Errorf("inmap: while parsing webMapProj: %v", err)
}
gridSR, err := proj.Parse(config.GridProj)
if err != nil {
return nil, false, fmt.Errorf("inmap: while parsing GridProj: %v", err)
}
webMapTrans, err := gridSR.NewTransform(webMapSR)
if err != nil {
return nil, false, fmt.Errorf("inmap: while creating webMapTrans: %v", err)
}
if gridSR.ToMeter > 1.0000001 || gridSR.ToMeter < 0.999999 || gridSR.Name == "longlat" {
notMeters = true
}
return webMapTrans, notMeters, nil
}
// RegularGrid returns a function that creates a new regular
// (i.e., not variable resolution) grid
// as specified by the information in c.
func (config *VarGridConfig) RegularGrid(data *CTMData, pop *Population, popIndex PopIndices, mortRates *MortalityRates, mortIndex MortIndices, emis *Emissions, m Mechanism) DomainManipulator {
return func(d *InMAP) error {
webMapTrans, notMeters, err := config.webMapTrans()
if err != nil {
return err
}
d.PopIndices = (map[string]int)(popIndex)
d.mortIndices = (map[string]int)(mortIndex)
nz := data.Data["UAvg"].Data.Shape[0]
d.nlayers = nz
type cellErr struct {
cell *Cell
err error
}
nx := config.Xnests[0]
ny := config.Ynests[0]
// Iterate through indices and create the cells in the outermost nest.
indices := make([][][2]int, 0, nz*ny*nx)
layers := make([]int, 0, nz*ny*nx)
for k := 0; k < nz; k++ {
for j := 0; j < ny; j++ {
for i := 0; i < nx; i++ {
indices = append(indices, [][2]int{{i, j}})
layers = append(layers, k)
}
}
}
err = d.addCells(config, indices, layers, nil, data, pop, mortRates, emis, webMapTrans, m, notMeters)
if err != nil {
return err
}
return nil
}
}
// totalMassPopulation calculates the total pollution mass in the domain and the
// total population of group popGridColumn.
func (d *InMAP) totalMassPopulation(popGridColumn string) (totalMass, totalPopulation float64, err error) {
iPop, ok := d.PopIndices[popGridColumn]
if !ok {
return math.Inf(-1), math.Inf(-1), fmt.Errorf("inmap: PopGridColumn '%s' does not exist in census file", popGridColumn)
}
for _, c := range *d.cells {
totalMass += floats.Sum(c.Cf) * c.Volume
if c.Layer == 0 { // only track population at ground level
totalPopulation += c.PopData[iPop]
}
}
return
}
// MutateGrid returns a function that creates a static variable
// resolution grid (i.e., one that does not change during the simulation)
// by dividing cells as determined by divideRule. Cells where divideRule is
// true are divided to the next nest level (up to the maximum nest level), and
// cells where divideRule is false are combined (down to the baseline nest level).
// Log messages are written to logChan if it is not nil.
func (config *VarGridConfig) MutateGrid(divideRule GridMutator, data *CTMData, pop *Population, mortRates *MortalityRates, emis *Emissions, m Mechanism, logChan chan string) DomainManipulator {
return func(d *InMAP) error {
if logChan != nil {
logChan <- fmt.Sprint("Adding grid cells...")
}
beginCells := d.cells.len()
totalMass, totalPopulation, err := d.totalMassPopulation(config.PopGridColumn)
if err != nil {
return err
}
webMapTrans, notMeters, err := config.webMapTrans()
if err != nil {
return err
}
continueMutating := true
for continueMutating {
continueMutating = false
var newCellIndices [][][2]int
var newCellLayers []int
var newCellConc [][]float64
var cellsToDelete []*cellRef
for _, cell := range *d.cells {
if len(cell.Index) < len(config.Xnests) {
if divideRule(cell.Cell, totalMass, totalPopulation) {
continueMutating = true
// mark the grid cell for deletion
cellsToDelete = append(cellsToDelete, cell)
// Create inner nested cells instead of using this one.
for ii := 0; ii < config.Xnests[len(cell.Index)]; ii++ {
for jj := 0; jj < config.Ynests[len(cell.Index)]; jj++ {
newIndex := make([][2]int, len(cell.Index)+1)
for k, ij := range cell.Index {
newIndex[k] = [2]int{ij[0], ij[1]}
}
newIndex[len(newIndex)-1] = [2]int{ii, jj}
newCellIndices = append(newCellIndices, newIndex)
newCellLayers = append(newCellLayers, cell.Layer)
newCellConc = append(newCellConc, cell.Cf)
}
}
}
}
}
// Delete the grid cells.
for _, cell := range cellsToDelete {
d.cells.delete(cell)
d.index.Delete(cell.Cell)
cell.dereferenceNeighbors(d)
}
// Add new cells.
err = d.addCells(config, newCellIndices, newCellLayers, newCellConc,
data, pop, mortRates, emis, webMapTrans, m, notMeters)
if err != nil {
return err
}
}
endCells := d.cells.len()
if logChan != nil {
logChan <- fmt.Sprintf("Added %d grid cells; there are now %d cells total",
endCells-beginCells, endCells)
}
return nil
}
}
func (d *InMAP) addCells(config *VarGridConfig, newCellIndices [][][2]int,
newCellLayers []int, conc [][]float64, data *CTMData, pop *Population,
mortRates *MortalityRates, emis *Emissions, webMapTrans proj.Transformer,
m Mechanism, notMeters bool) error {
type cellErr struct {
cell *Cell
err error
}
cellErrChan := make(chan cellErr, len(newCellIndices))
cellIndexChan := make(chan int)
nprocs := runtime.GOMAXPROCS(-1)
for p := 0; p < nprocs; p++ {
go func() {
for i := range cellIndexChan {
ii := newCellIndices[i]
var conci []float64
if conc != nil {
conci = conc[i]
}
cell, err2 := config.createCell(data, pop, d.PopIndices, mortRates, d.mortIndices, ii,
newCellLayers[i], conci, webMapTrans, m, notMeters)
cellErrChan <- cellErr{cell: cell, err: err2}
}
}()
}
// Create the new cells.
for i := 0; i < len(newCellIndices); i++ {
cellIndexChan <- i
}
close(cellIndexChan)
// Insert the new cells into d.
for range newCellIndices {
cellerr := <-cellErrChan
if cellerr.err != nil {
return cellerr.err
}
d.InsertCell(cellerr.cell, m)
}
// Add emissions to new cells.
// This needs to be called after setNeighbors.
if err := d.SetEmissionsFlux(emis, m); err != nil {
return err
}
return nil
}
// SetEmissionsFlux sets the emissions flux for the cells in the receiver
// based on the emissions in e.
func (d *InMAP) SetEmissionsFlux(emis *Emissions, m Mechanism) error {
nprocs := runtime.GOMAXPROCS(-1)
if emis != nil {
cellIndexChan2 := make(chan int)
errChan := make(chan error)
for p := 0; p < nprocs; p++ {
go func() {
for i := range cellIndexChan2 {
c := (*d.cells)[i]
if len(c.EmisFlux) == 0 {
if err := c.SetEmissionsFlux(emis, m); err != nil { // This needs to be called after setNeighbors.
errChan <- err
return
}
}
}
errChan <- nil
}()
}
for i := 0; i < d.cells.len(); i++ {
cellIndexChan2 <- i
}
close(cellIndexChan2)
for p := 0; p < nprocs; p++ {
if err := <-errChan; err != nil {
return err
}
}
}
return nil
}
// InsertCell adds a new cell to the grid. The function will take the necessary
// steps to fit the new cell in with existing cells, but it is the caller's
// reponsibility that the new cell doesn't overlap any existing cells.
func (d *InMAP) InsertCell(c *Cell, m Mechanism) {
if d.index == nil {
d.init()
}
if c.Layer > d.nlayers-1 { // Make sure we still have the right number of layers
d.nlayers = c.Layer + 1
}
d.cells.add(c)
d.index.Insert(c)
d.setNeighbors(c, m)
}
// A GridMutator is a function whether a Cell should be mutated (i.e., either
// divided or combined with other cells), where totalMass is absolute value
// of the total mass of pollution in the system and totalPopulation is the
// total population in the system.
type GridMutator func(cell *Cell, totalMass, totalPopulation float64) bool
// PopulationMutator returns a function that determines whether a grid cell
// should be split by determining whether either the cell population or
// maximum poulation density are above the thresholds specified in config.
func PopulationMutator(config *VarGridConfig, popIndices PopIndices) (GridMutator, error) {
popIndex := popIndices[config.PopGridColumn]
if config.PopThreshold <= 0 {
return nil, fmt.Errorf("PopThreshold=%g. It needs to be set to a positive value.",
config.PopThreshold)
}
if config.PopDensityThreshold <= 0 {
return nil, fmt.Errorf("PopDensityThreshold=%g. It needs to be set to a positive value.",
config.PopDensityThreshold)
}
return func(cell *Cell, _, _ float64) bool {
population := 0.
aboveDensityThreshold := false
for _, g := range *cell.groundLevel {
population += g.PopData[popIndex]
if g.AboveDensityThreshold {
aboveDensityThreshold = true
}
}
return cell.Layer < config.HiResLayers &&
(aboveDensityThreshold || population > config.PopThreshold)
}, nil
}
// PopConcMutator is a holds an algorithm for dividing grid cells based on
// gradients in population density and concentration. Refer to the methods
// for additional documentation.
type PopConcMutator struct {
config *VarGridConfig
popIndices PopIndices
}
// NewPopConcMutator initializes a new PopConcMutator object.
func NewPopConcMutator(config *VarGridConfig, popIndices PopIndices) *PopConcMutator {
return &PopConcMutator{config: config, popIndices: popIndices}
}
// Mutate returns a function that takes a grid cell and returns whether
// Σ(|ΔConcentration|)*combinedVolume*|ΔPopulation| / {Σ(|totalMass|)*totalPopulation}
// > a threshold between the
// grid cell in question and any of its horizontal neighbors, where Σ(|totalMass|)
// is the sum of the absolute values of the mass of all pollutants in
// all grid cells in the system,
// Σ(|ΔConcentration|) is the sum of the absolute value of the difference
// between pollution concentations in the cell in question and the neighbor in
// question, |ΔPopulation| is the absolute value of the difference in population
// between the two grid cells, totalPopulation is the total population in the domain,
// and combinedVolume is the combined volume of the cell in question
// and the neighbor in question.
func (p *PopConcMutator) Mutate() GridMutator {
iPop := p.popIndices[p.config.PopGridColumn]
return func(cell *Cell, totalMass, totalPopulation float64) bool {
if totalMass == 0. || totalPopulation == 0 {
return false
}
var groundCellPop float64
for _, gc := range *cell.groundLevel {
groundCellPop += gc.PopData[iPop]
}
totalMassPop := totalMass * totalPopulation
for _, group := range []*cellList{cell.west, cell.east, cell.north, cell.south} {
for _, neighbor := range *group {
var groundNeighborPop float64
for _, gc := range *neighbor.groundLevel {
groundNeighborPop += gc.PopData[iPop]
}
ΣΔC := 0.
for i, conc := range neighbor.Cf {
ΣΔC += math.Abs(conc - cell.Cf[i])
}
ΔP := math.Abs(groundCellPop - groundNeighborPop)
if ΣΔC*(cell.Volume+neighbor.Volume)*ΔP/totalMassPop > p.config.PopConcThreshold {
return true
}
}
}
return false
}
}
// cellGeometry returns the geometry of a cell with the give index.
func (config *VarGridConfig) cellGeometry(index [][2]int) geom.Polygonal {
xResFac, yResFac := 1., 1.
l := config.VariableGridXo
b := config.VariableGridYo
for i, ii := range index {
if i > 0 {
xResFac *= float64(config.Xnests[i])
yResFac *= float64(config.Ynests[i])
}
l += float64(ii[0]) * config.VariableGridDx / xResFac
b += float64(ii[1]) * config.VariableGridDy / yResFac
}
r := l + config.VariableGridDx/xResFac
u := b + config.VariableGridDy/yResFac
return &geom.Bounds{Min: geom.Point{X: l, Y: b}, Max: geom.Point{X: r, Y: u}}
}
// createCell creates a new grid cell. If any of the census shapes
// that intersect the cell are above the population density threshold,
// then the grid cell is also set to being above the density threshold.
// If conc != nil, the concentration data for the new cell will be set to conc.
// notMeters should be set to true if the units of the grid are not
// in meters.
func (config *VarGridConfig) createCell(data *CTMData, pop *Population, popIndices PopIndices,
mortRates *MortalityRates, mortIndices MortIndices, index [][2]int, layer int, conc []float64, webMapTrans proj.Transformer, m Mechanism, notMeters bool) (*Cell, error) {
cell := new(Cell)
cell.PopData = make([]float64, len(popIndices))
cell.MortData = make([]float64, len(mortIndices))
cell.Index = index
// Polygon must go counter-clockwise
cell.Polygonal = config.cellGeometry(index)
if layer == 0 {
// only ground level grid cells have people
cell.loadPopMortalityRate(config, mortRates, mortIndices, pop, popIndices)
}
gg, err := cell.Polygonal.Transform(webMapTrans)
if err != nil {
return nil, err
}
cell.WebMapGeom = gg.(geom.Polygonal)
var bounds *geom.Bounds
if notMeters {
bounds = cell.WebMapGeom.Bounds()
} else {
bounds = cell.Polygonal.Bounds()
}
cell.Dx = bounds.Max.X - bounds.Min.X
cell.Dy = bounds.Max.Y - bounds.Min.Y
cell.make(m)
if err := cell.loadData(data, layer); err != nil {
return nil, err
}
cell.Volume = cell.Dx * cell.Dy * cell.Dz
if conc != nil {
copy(cell.Cf, conc)
copy(cell.Ci, conc)
}
return cell, nil
}
// loadPopMortalityRate calculates the population and baseline mortality rate for this cell.
// The population in each cell is calculated as an area-weighted average.
// The mortality rate in each cell is calculated as a population-weighted average. If
// multiple mortality rate polygons overlap or lie within a single population
// polygon, the mortality rate in each cell is equal to the population-weighted
// average of: the area-weighted average of mortality rates within each population polygon.
func (c *Cell) loadPopMortalityRate(config *VarGridConfig, mortRates *MortalityRates, mortIndices MortIndices, pop *Population, popIndices PopIndices) {
// First, prepare mortality rates for later processing.
cellMortI := mortRates.tree.SearchIntersect(c.Bounds())
cellMort := make([]*mortality, len(cellMortI))
for i, mI := range cellMortI {
m := mI.(*mortality)
cellMort[i] = &mortality{
Polygonal: c.Polygonal.Intersection(m.Polygonal),
MortData: m.MortData,
}
}
// Second, intersect each grid cell with population polygons
popGen := pop.tree(c.Bounds())
for {
p, err := popGen()
if err != nil {
if err == io.EOF {
break
}
panic(err)
}
if p == nil {
continue
}
pIntersection := c.Polygonal.Intersection(p.Polygonal)
if pIntersection == nil {
continue
}
pAreaIntersect := pIntersection.Area()
if pAreaIntersect == 0 {
continue
}
pArea := p.Area() // we want to conserve the total population
if pArea == 0. {
panic("divide by zero")
}
pAreaFrac := pAreaIntersect / pArea
for popType, pop := range p.PopData {
c.PopData[popType] += pop * pAreaFrac
}
// Check if this census shape is above the density threshold.
pDensity := p.PopData[popIndices[config.PopGridColumn]] / pArea
if pDensity > config.PopDensityThreshold {
c.AboveDensityThreshold = true
}
var mAreaTotal float64
// Third, intersect each intersection from first step with
// mortality rate polygons.
for _, m := range cellMort {
mIntersection := pIntersection.Intersection(m.Polygonal)
if mIntersection == nil {
continue
}
mAreaIntersect := mIntersection.Area()
if mAreaIntersect == 0 {
continue
}
// Sum areas of intersecting mortality rate polygons for use in area-weighting.
mAreaTotal += mAreaIntersect
}
for _, mInterface := range mortRates.tree.SearchIntersect(pIntersection.Bounds()) {
m := mInterface.(*mortality)
mIntersection := pIntersection.Intersection(m.Polygonal)
mAreaIntersect := mIntersection.Area()
if mAreaIntersect == 0 {
continue
}
// Perform population-weighted average of area-weighted average mortality rates.
for mortType, popType := range config.MortalityRateColumns {
c.MortData[mortIndices[mortType]] += p.PopData[popIndices[popType]] * pAreaFrac * m.MortData[mortIndices[mortType]] * (mAreaIntersect / mAreaTotal)
}
}
}
for mortType, popType := range config.MortalityRateColumns {
if c.PopData[popIndices[popType]] > 0 {
c.MortData[mortIndices[mortType]] = c.MortData[mortIndices[mortType]] / c.PopData[popIndices[popType]]
}
}
}
type population struct {
geom.Polygonal
// PopData holds the number of people in each population category
PopData []float64
}
type mortality struct {
geom.Polygonal
// MortData holds the mortality rate for each population category
MortData []float64 // Deaths per 100,000 people per year
}
// loadPopulation loads population information from a shapefile or
// COARDS-compliant NetCDF file (determined by file extension), converting it
// to spatial reference sr and then discarding any geometries that do not
// overlap with bounds. The function outputs an index holding the population
// information and a map giving the array index of each population type.
func (config *VarGridConfig) loadPopulation(sr *proj.SR, bounds *geom.Bounds) (func(*geom.Bounds) func() (*population, error), map[string]int, error) {
x := filepath.Ext(config.CensusFile)
if x == ".shp" {
return config.loadPopulationShapefile(sr, bounds)
} else if x == ".ncf" || x == ".nc" {
return config.loadPopulationCOARDS(sr)
}
return nil, nil, fmt.Errorf("inmap: invalid CensusFile type %s; valid types are .shp, .nc and .ncf", x)
}
// loadPopulationShapefile loads population information from a shapefile, converting it
// to spatial reference sr and discarding any geometryies that do not overlap
// with bounds. The function outputs an index holding the population
// information and a map giving the array index of each population type.
func (config *VarGridConfig) loadPopulationShapefile(sr *proj.SR, bounds *geom.Bounds) (func(*geom.Bounds) func() (*population, error), map[string]int, error) {
var err error
popshp, err := shp.NewDecoder(config.CensusFile)
if err != nil {
return nil, nil, err
}
popsr, err := popshp.SR()
if err != nil {
return nil, nil, err
}
trans, err := popsr.NewTransform(sr)
if err != nil {
return nil, nil, err
}
// Create a list of array indices for each population type.
popIndices := make(map[string]int)
for i, p := range config.CensusPopColumns {
popIndices[p] = i
}
pop := rtree.NewTree(25, 50)
for {
g, fields, more := popshp.DecodeRowFields(config.CensusPopColumns...)
if !more {
break
}
p := &population{PopData: make([]float64, len(config.CensusPopColumns))}
for i, pop := range config.CensusPopColumns {
s, ok := fields[pop]
if !ok {
return nil, nil, fmt.Errorf("inmap: loading population shapefile: missing attribute column %s", pop)
}
p.PopData[i], err = s2f(s)