-
Notifications
You must be signed in to change notification settings - Fork 25
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
The problem of pre_train model #2
Comments
Did you try the latest code? I tested it now. The pre-trained weights can be successfully loaded. |
Hi @xiaomengyc
Did you make that change? Could you explain it for me? Thanks! |
Hi @yeezhu,
|
Thank you! @xiaomengyc
So, can you share the detailed settings for training CUB on SPG-plain? |
HI!XiaoMeng!
The problem occurs when I load the pretrain model you provide at (https://drive.google.com/open?id=1EwRuqfGASarGidutnYB8rXLSuzYpEoSM). the model named imagenet_epoch_2_glo_step_128118.pth.tar.
error:
Missing key(s) in state_dict: "Conv2d_1a_3x3.conv.weight", "Conv2d_1a_3x3.bn.weight", "Conv2d_1a_3x3.bn.bias", "Conv2d_1a_3x3.bn.running_mean", "Conv2d_1a_3x3.bn.running_var", "Conv2d_2a_3x3.conv.weight", "Conv2d_2a_3x3.bn.weight", "Conv2d_2a_3x3.bn.bias", "Conv2d_2a_3x3.bn.running_mean", "Conv2d_2a_3x3.bn.running_var", "Conv2d_2b_3x3.conv.weight", "Conv2d_2b_3x3.bn.weight", "Conv2d_2b_3x3.bn.bias", "Conv2d_2b_3x3.bn.running_mean", "Conv2d_2b_3x3.bn.running_var", "Conv2d_3b_1x1.conv.weight", "Conv2d_3b_1x1.bn.weight", "Conv2d_3b_1x1.bn.bias", "Conv2d_3b_1x1.bn.running_mean", "Conv2d_3b_1x1.bn.running_var", "Conv2d_4a_3x3.conv.weight", "Conv2d_4a_3x3.bn.weight", "Conv2d_4a_3x3.bn.bias", "Conv2d_4a_3x3.bn.running_mean", "Conv2d_4a_3x3.bn.running_var", "Mixed_5b.branch1x1.conv.weight", "Mixed_5b.branch1x1.bn.weight", "Mixed_5b.branch1x1.bn.bias", "Mixed_5b.branch1x1.bn.running_mean", "Mixed_5b.branch1x1.bn.running_var", "Mixed_5b.branch5x5_1.conv.weight", "Mixed_5b.branch5x5_1.bn.weight", "Mixed_5b.branch5x5_1.bn.bias", "Mixed_5b.branch5x5_1.bn.running_mean", "Mixed_5b.branch5x5_1.bn.running_var", "Mixed_5b.branch5x5_2.conv.weight", "Mixed_5b.branch5x5_2.bn.weight", "Mixed_5b.branch5x5_2.bn.bias", "Mixed_5b.branch5x5_2.bn.running_mean", "Mixed_5b.branch5x5_2.bn.running_var", "Mixed_5b.branch3x3dbl_1.conv.weight", "Mixed_5b.branch3x3dbl_1.bn.weight", "Mixed_5b.branch3x3dbl_1.bn.bias", "Mixed_5b.branch3x3dbl_1.bn.running_mean", "Mixed_5b.branch3x3dbl_1.bn.running_var", "Mixed_5b.branch3x3dbl_2.conv.weight", "Mixed_5b.branch3x3dbl_2.bn.weight", "Mixed_5b.branch3x3dbl_2.bn.bias", "Mixed_5b.branch3x3dbl_2.bn.running_mean", "Mixed_5b.branch3x3dbl_2.bn.running_var", "Mixed_5b.branch3x3dbl_3.conv.weight", "Mixed_5b.branch3x3dbl_3.bn.weight", "Mixed_5b.branch3x3dbl_3.bn.bias", "Mixed_5b.branch3x3dbl_3.bn.running_mean", "Mixed_5b.branch3x3dbl_3.bn.running_var", "Mixed_5b.branch_pool.conv.weight", "Mixed_5b.branch_pool.bn.weight", "Mixed_5b.branch_pool.bn.bias", "Mixed_5b.branch_pool.bn.running_mean", "Mixed_5b.branch_pool.bn.running_var", "Mixed_5c.branch1x1.conv.weight", "Mixed_5c.branch1x1.bn.weight", "Mixed_5c.branch1x1.bn.bias", "Mixed_5c.branch1x1.bn.running_mean", "Mixed_5c.branch1x1.bn.running_var", "Mixed_5c.branch5x5_1.conv.weight", "Mixed_5c.branch5x5_1.bn.weight", "Mixed_5c.branch5x5_1.bn.bias", "Mixed_5c.branch5x5_1.bn.running_mean", "Mixed_5c.branch5x5_1.bn.running_var", "Mixed_5c.branch5x5_2.conv.weight", "Mixed_5c.branch5x5_2.bn.weight", "Mixed_5c.branch5x5_2.bn.bias", "Mixed_5c.branch5x5_2.bn.running_mean", "Mixed_5c.branch5x5_2.bn.running_var", "Mixed_5c.branch3x3dbl_1.conv.weight", "Mixed_5c.branch3x3dbl_1.bn.weight", "Mixed_5c.branch3x3dbl_1.bn.bias", "Mixed_5c.branch3x3dbl_1.bn.running_mean", "Mixed_5c.branch3x3dbl_1.bn.running_var", "Mixed_5c.branch3x3dbl_2.conv.weight", "Mixed_5c.branch3x3dbl_2.bn.weight", "Mixed_5c.branch3x3dbl_2.bn.bias", "Mixed_5c.branch3x3dbl_2.bn.running_mean", "Mixed_5c.branch3x3dbl_2.bn.running_var", "Mixed_5c.branch3x3dbl_3.conv.weight", "Mixed_5c.branch3x3dbl_3.bn.weight", "Mixed_5c.branch3x3dbl_3.bn.bias", "Mixed_5c.branch3x3dbl_3.bn.running_mean", "Mixed_5c.branch3x3dbl_3.bn.running_var", "Mixed_5c.branch_pool.conv.weight", "Mixed_5c.branch_pool.bn.weight", "Mixed_5c.branch_pool.bn.bias", "Mixed_5c.branch_pool.bn.running_mean", "Mixed_5c.branch_pool.bn.running_var", "Mixed_5d.branch1x1.conv.weight", "Mixed_5d.branch1x1.bn.weight",
........
it reveal the the model cant match the net defined. Is there some mistake in the model I downloaded?Please enlighten me. Thank you very much!
The text was updated successfully, but these errors were encountered: