-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain.py
313 lines (258 loc) · 15.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import argparse
import importlib
import models
import os
import tensorflow as tf
import time
import sys
import h5py
import numpy as np
BASE_DIR = os.path.dirname(os.path.abspath(__file__))
ROOT_DIR = BASE_DIR
sys.path.append(BASE_DIR) # model
sys.path.append('./utils')
sys.path.append(os.path.join(ROOT_DIR, 'pc_distance'))
sys.path.append(os.path.join(ROOT_DIR, 'tf_ops/sampling'))
sys.path.append(os.path.join(ROOT_DIR, 'tf_ops/grouping'))
import tf_util
parser = argparse.ArgumentParser()
parser.add_argument('--model_type', default='cascaded_refinement_net')
parser.add_argument('--lr_decay', default=False)
parser.add_argument('--lr_decay_epochs', type=int, default=40)
parser.add_argument('--h5_train',default='data/our_data/train_data.h5')
parser.add_argument('--h5_val',default='data/our_data/valid_data.h5')
parser.add_argument('--num_gpus', default=1, type=int)
parser.add_argument('--gpu', default='1')
parser.add_argument('--allow_growth', action='store_false')
parser.add_argument('--step_ratio', type=int, default=2)
parser.add_argument('--num_gt_points', type=int, default=2048)
parser.add_argument('--mean_features', default='data/our_data/mean_feature.h5')
parser.add_argument('--mean_feature_size', type=int, default=1024)
parser.add_argument('--log_dir', default='log/me/test_')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--loss_type', type=str, default='CD_T')
parser.add_argument('--steps_per_print', type=int, default=1000)
parser.add_argument('--steps_per_eval', type=int, default=100)
parser.add_argument('--steps_per_save', type=int, default=2000)
parser.add_argument('--augment', action='store_true')
parser.add_argument('--pc_augm_scale', default=0.0, type=float,help='Training augmentation: Uniformly random scaling in [1/scale, scale]') # 1.1
parser.add_argument('--pc_augm_rot', default=0, type=int,help='Training augmentation: Bool, random rotation around z-axis')
parser.add_argument('--pc_augm_mirror_prob', default=0.0, type=float,help='Training augmentation: Probability of mirroring about x or y axes')
parser.add_argument('--pc_augm_jitter', default=0, type=int,help='Training augmentation: Bool, Gaussian jittering of all attributes')
parser.add_argument('--restore', action='store_true') # default=True action='store_true'
parser.add_argument('--rec_weight', default=200.0, type=float)
parser.add_argument('--base_lr_d', type=float, default=0.00005)
parser.add_argument('--base_lr_g', type=float, default=0.0001)
parser.add_argument('--num_input_points', type=int, default=2048)
parser.add_argument('--max_epoch', type=int, default=300)
parser.add_argument('--lr_decay_rate', type=float, default=0.7)
parser.add_argument('--lr_clip', type=float, default=1e-6)
args = parser.parse_args()
if args.num_gpus == 1:
os.environ['CUDA_VISIBLE_DEVICES'] = args.gpu
assert (args.batch_size % args.num_gpus == 0)
DEVICE_BATCH_SIZE = args.batch_size / args.num_gpus
if args.pc_augm_scale>1:
assert args.augment==True
args.log_dir = args.log_dir + str(args.step_ratio)
os.makedirs(args.log_dir,exist_ok=True)
os.makedirs(os.path.join(args.log_dir, 'plots'),exist_ok=True)
LOG_FOUT = open(os.path.join(args.log_dir, 'log_train.txt'), 'a')
LOG_FOUT.write(str(args) + '\n')
def log_string(out_str):
LOG_FOUT.write(out_str + '\n')
LOG_FOUT.flush()
print(out_str)
def average_gradients(tower_grads):
average_grads = []
for grad_and_vars in zip(*tower_grads):
grads = []
# for g, _ in grad_and_vars:
for g, v in grad_and_vars:
# Add 0 dimension to the gradients to represent the tower.
expanded_g = tf.expand_dims(g, 0)
# Append on a 'tower' dimension which we will average over below.
grads.append(expanded_g)
# Average over the 'tower' dimension.
grad = tf.concat(axis=0, values=grads)
grad = tf.reduce_mean(grad, 0)
# Keep in mind that the Variables are redundant because they are shared
# across towers. So .. we will just return the first tower's pointer to
# the Variable.
v = grad_and_vars[0][1]
grad_and_var = (grad, v)
average_grads.append(grad_and_var)
return average_grads
def train(args):
is_training_pl = tf.placeholder(tf.bool, shape=(), name='is_training')
global_step = tf.Variable(0, trainable=False, name='global_step')
alpha = tf.train.piecewise_constant(global_step, [10000,20000,50000],[0.01, 0.1, 0.5, 1.0], 'alpha_op')
inputs_pl = tf.placeholder(tf.float32, (args.batch_size, args.num_input_points, 3), 'inputs')
gt_pl = tf.placeholder(tf.float32, (args.batch_size, args.num_gt_points, 3), 'ground_truths')
mean_feature = tf.placeholder(tf.float32, (args.batch_size, args.mean_feature_size), 'mean_features')
model_module = importlib.import_module('.%s' % args.model_type, 'models')
file_train = h5py.File(args.h5_train, 'r')
incomplete_pcds_train = file_train['incomplete_pcds'][()]
complete_pcds_train = file_train['complete_pcds'][()]
labels_train = file_train['labels'][()].astype(int)
train_num = complete_pcds_train.shape[0]
if args.lr_decay:
lr_decay_step = int(train_num / args.batch_size * args.lr_decay_epochs)
learning_rate_d = tf.where(
tf.greater_equal(global_step//2, lr_decay_step),
tf.train.exponential_decay(args.base_lr_d, global_step//2,
lr_decay_step, args.lr_decay_rate, staircase=True),
args.base_lr_d
)
learning_rate_d = tf.maximum(learning_rate_d, args.lr_clip)
learning_rate_g = tf.where(
tf.greater_equal(global_step//2, lr_decay_step),
tf.train.exponential_decay(args.base_lr_g, global_step//2,
lr_decay_step, args.lr_decay_rate, staircase=True),
args.base_lr_g
)
learning_rate_g = tf.maximum(learning_rate_g, args.lr_clip)
else:
learning_rate_g=tf.constant(args.base_lr_g, name='lr_g')
learning_rate_d = tf.constant(args.base_lr_d, name='lr_d')
with tf.control_dependencies(tf.get_collection(tf.GraphKeys.UPDATE_OPS)):
G_optimizers = tf.train.AdamOptimizer(learning_rate_g, beta1=0.9)
D_optimizers = tf.train.AdamOptimizer(learning_rate_d, beta1=0.5)
tower_grads_g = []
tower_grads_d = []
coarse_gpu = []
fine_gpu = []
total_dis_loss_gpu=[]
errG_loss_gpu=[]
total_gen_loss_gpu=[]
total_loss_rec_gpu=[]
for i in range(args.num_gpus):
with tf.variable_scope(tf.get_variable_scope(), reuse=tf.AUTO_REUSE):
with tf.device('/gpu:%d' % (i)), tf.name_scope('gpu_%d' % (i)) as scope:
inputs_pl_batch = tf.slice(inputs_pl, [int(i * DEVICE_BATCH_SIZE), 0, 0],[int(DEVICE_BATCH_SIZE), -1, -1])
gt_pl_batch = tf.slice(gt_pl, [int(i * DEVICE_BATCH_SIZE), 0, 0], [int(DEVICE_BATCH_SIZE), -1, -1])
mean_feature_batch = tf.slice(mean_feature, [int(i * DEVICE_BATCH_SIZE), 0],[int(DEVICE_BATCH_SIZE), -1])
### generator ###
with tf.variable_scope('generator', reuse=tf.AUTO_REUSE):
features_partial_batch = model_module.create_encoder(inputs_pl_batch)
coarse_batch, fine_batch = model_module.create_decoder \
(features_partial_batch, inputs_pl_batch, args.step_ratio, num_extract=512, mean_feature=mean_feature_batch)
assert fine_batch.get_shape()[1].value == args.step_ratio * 1024
dist1_fine, dist2_fine = tf_util.chamfer_distance(fine_batch, gt_pl_batch)
dist1_coarse, dist2_coarse = tf_util.chamfer_distance(coarse_batch, gt_pl_batch)
total_loss_fine = (tf.reduce_mean(tf.sqrt(dist1_fine)) + tf.reduce_mean(tf.sqrt(dist2_fine))) / 2
total_loss_coarse = (tf.reduce_mean(tf.sqrt(dist1_coarse)) + tf.reduce_mean(tf.sqrt(dist2_coarse))) / 2
total_loss_rec_batch = alpha * total_loss_fine + total_loss_coarse
### discriminator ###
with tf.variable_scope('discriminator', reuse=tf.AUTO_REUSE):
d_fake = model_module.patch_dection(fine_batch[:,0:2048,:], divide_ratio=2)
d_real = model_module.patch_dection(gt_pl_batch[:,0:2048,:], divide_ratio=2)
d_loss_real = tf.reduce_mean((d_real - 1) ** 2)
d_loss_fake = tf.reduce_mean(d_fake ** 2)
errD_loss_batch = 0.5 * (d_loss_real + d_loss_fake)
errG_loss_batch = tf.reduce_mean((d_fake - 1) ** 2)
t_vars = tf.global_variables()
gen_tvars = [var for var in t_vars if var.name.startswith("generator")] # (var.name.startswith("ae") or var.name.startswith("agg") or var.name.startswith("decoder"))
dis_tvars = [var for var in t_vars if var.name.startswith("discriminator")]
clip_D = [p.assign(tf.clip_by_value(p, -0.01, 0.01)) for p in dis_tvars]
total_gen_loss_batch = errG_loss_batch + total_loss_rec_batch * args.rec_weight
total_dis_loss_batch = errD_loss_batch
# Calculate the gradients for the batch of data on this tower.
grads_g = G_optimizers.compute_gradients(total_gen_loss_batch, var_list=gen_tvars)
grads_d = D_optimizers.compute_gradients(total_dis_loss_batch, var_list=dis_tvars)
# Keep track of the gradients across all towers.
tower_grads_g.append(grads_g)
tower_grads_d.append(grads_d)
coarse_gpu.append(coarse_batch)
fine_gpu.append(fine_batch)
total_dis_loss_gpu.append(total_dis_loss_batch)
errG_loss_gpu.append(errG_loss_batch)
total_gen_loss_gpu.append(total_gen_loss_batch)
total_loss_rec_gpu.append(total_loss_rec_batch)
grads_g = average_gradients(tower_grads_g)
grads_d = average_gradients(tower_grads_d)
train_G = G_optimizers.apply_gradients(grads_g, global_step=global_step)
train_D = D_optimizers.apply_gradients(grads_d, global_step=global_step)
fine = tf.concat(fine_gpu, 0)
total_dis_loss = tf.reduce_mean(total_dis_loss_gpu)
errG_loss = tf.reduce_mean(errG_loss_gpu)
total_gen_loss = tf.reduce_mean(total_gen_loss_gpu)
total_loss_rec = tf.reduce_mean(total_loss_rec_gpu)
dist1_eval, dist2_eval = tf_util.chamfer_distance(fine, gt_pl)
file_val = h5py.File(args.h5_val, 'r')
incomplete_pcds_val = file_val['incomplete_pcds'][()]
complete_pcds_val = file_val['complete_pcds'][()]
labels_val = file_val['labels'][()]
file_val.close()
config = tf.ConfigProto()
config.gpu_options.allow_growth = args.allow_growth
config.allow_soft_placement = True
sess = tf.Session(config=config)
saver = tf.train.Saver()
sess.run(tf.global_variables_initializer())
file_mean_feature = h5py.File(args.mean_features, 'r')
mean_feature_data = file_mean_feature['mean_features'][()]
file_mean_feature.close()
if args.restore:
saver.restore(sess, tf.train.latest_checkpoint(args.log_dir))
print('load model', args.log_dir)
else:
os.system('cp models/%s.py %s' % (args.model_type, args.log_dir))
os.system('cp train.py %s' % args.log_dir)
train_ids = np.arange(incomplete_pcds_train.shape[0])
train_num = incomplete_pcds_train.shape[0]
init_step = sess.run(global_step//2)
epoch = init_step * args.batch_size // train_num + 1
print('init_step:%d,' % init_step, 'epoch:%d' % epoch,'training data number:%d'%train_num)
best_loss=10
num_batches = train_num // args.batch_size
for ep_cnt in range(epoch, args.max_epoch+1):
np.random.shuffle(train_ids)
for batch_idx in range(num_batches):
init_step+=1
start_idx = batch_idx * args.batch_size
end_idx = min(start_idx + args.batch_size, train_num)
ids_train = train_ids[start_idx:end_idx]
batch_data = incomplete_pcds_train[ids_train]
batch_gt = complete_pcds_train[ids_train]
if args.augment:
for k in range(end_idx - start_idx):
batch_gt[k], batch_data[k] = tf_util.augment_cloud([batch_gt[k], batch_data[k]], args)
labels = labels_train[ids_train].astype(int)
mean_feature_input = mean_feature_data[labels]
feed_dict = {inputs_pl: batch_data, gt_pl: batch_gt, is_training_pl: True,mean_feature: mean_feature_input}
_,_, loss_dis = sess.run([train_D,clip_D, total_dis_loss], feed_dict=feed_dict)
_, loss_gen, rec_loss,errg_loss = sess.run([train_G, total_gen_loss, total_loss_rec, errG_loss],feed_dict=feed_dict)
if init_step % args.steps_per_print == 0:
log_string('epoch %d step %d dis_loss %.8f total_gen_loss %.8f rec_loss %.8f gen_loss %.8f'%(ep_cnt,init_step,loss_dis,loss_gen,rec_loss,errg_loss))
if init_step % args.steps_per_eval == 0:
total_loss = 0
sess.run(tf.local_variables_initializer())
batch_data = np.zeros((args.batch_size, incomplete_pcds_val[0].shape[0], 3), 'f')
batch_gt = np.zeros((args.batch_size, args.num_gt_points, 3), 'f')
labels=np.zeros((args.batch_size,), dtype=np.int32)
for batch_idx_eval in range(0, incomplete_pcds_val.shape[0], args.batch_size):
start_idx = batch_idx_eval
end_idx = min(start_idx+ args.batch_size,incomplete_pcds_val.shape[0])
batch_data[0:end_idx - start_idx] = incomplete_pcds_val[start_idx:end_idx]
batch_gt[0:end_idx - start_idx] = complete_pcds_val[start_idx:end_idx]
labels[0:end_idx - start_idx] = labels_val[start_idx:end_idx]
mean_feature_input_eval = mean_feature_data[labels]
feed_dict = {inputs_pl: batch_data, gt_pl: batch_gt, is_training_pl: False, mean_feature: mean_feature_input_eval}
dist1_out , dist2_out = sess.run([dist1_eval, dist2_eval], feed_dict=feed_dict)
if args.loss_type == 'CD_T':
total_loss += np.mean(dist1_out[0:end_idx - start_idx]) * (end_idx - start_idx) \
+ np.mean(dist2_out[0:end_idx - start_idx]) * (end_idx - start_idx)
elif args.loss_type == 'CD_P':
total_loss += (np.mean(np.sqrt(dist1_out[0:end_idx - start_idx])) * (end_idx - start_idx) \
+ np.mean(np.sqrt(dist2_out[0:end_idx - start_idx])) * (end_idx - start_idx)) / 2
if total_loss / incomplete_pcds_val.shape[0] < best_loss:
best_loss = total_loss / incomplete_pcds_val.shape[0]
saver.save(sess, os.path.join(args.log_dir, 'model'), init_step)
log_string('epoch %d step %d loss %.8f best_loss %.8f' %(ep_cnt, init_step, total_loss / incomplete_pcds_val.shape[0], best_loss))
if init_step % args.steps_per_save == 0:
saver.save(sess, os.path.join(args.log_dir, 'model'), init_step)
file_train.close()
sess.close()
if __name__ == '__main__':
train(args)