forked from Vrushank264/mini-diffusion
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
160 lines (105 loc) · 4.43 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
import torch
import torch.nn as nn
import torchvision as tv
import torchvision.transforms as T
from torch.utils.data import DataLoader
import cv2
import numpy as np
import os
import matplotlib.pyplot as plt
from matplotlib.animation import FuncAnimation, PillowWriter
from tqdm import tqdm
import wandb
from model.Unet import UNet
from ddpm import DDPM
class AverageMeter:
def __init__(self, name=None):
self.name = name
self.reset()
def reset(self):
self.sum = self.count = self.avg = 0
def update(self, val, n=1):
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
@torch.no_grad()
def plot(ddpm_model, num_cls, ws, save_dir, epoch):
ddpm_model.eval()
num_samples = 4 * num_cls
for w_i, w in enumerate(ws):
pred, pred_arr = ddpm_model.sample(num_samples, (1,28,28), num_cls, w)
real = torch.tensor(pred.shape).cuda()
#print(pred.shape, real.shape)
#combined = torch.cat([real, pred])
grid = tv.utils.make_grid(pred, nrow = 10)
grid_arr = grid.squeeze().detach().cpu().numpy()
print(f'Grid Array Shape: {grid_arr.shape}')
cv2.imwrite(f'{save_dir}/pred_epoch_{epoch}_w_{w}.png', grid_arr.transpose(1,2,0))
ddpm_model.train()
return grid_arr.transpose(1,2,0)
def train(unet, ddpm_model, loader, opt, criterion, scaler, num_cls, save_dir, ws, epoch, num_epochs):
unet.train()
ddpm_model.train()
wandb.log({
'Epoch': epoch
})
loop = tqdm(loader, position = 0, leave = True)
loss_ = AverageMeter()
for idx, (img, class_lbl) in enumerate(loop):
img = img.cuda(non_blocking = True)
lbl = class_lbl.cuda(non_blocking = True)
opt.zero_grad(set_to_none = True)
with torch.cuda.amp.autocast_mode.autocast():
noise, x_t, ctx, timestep, ctx_mask = ddpm_model(img, lbl)
pred = unet(x_t.half(), ctx, timestep.half(), ctx_mask.half())
loss = criterion(noise, pred)
scaler.scale(loss).backward()
scaler.step(opt)
scaler.update()
loss_.update(loss.detach(), img.size(0))
if idx % 200 == 0:
wandb.log({
'Loss': loss_.avg
})
print(loss_.avg)
if epoch % 2 == 0:
ddpm_model.eval()
with torch.no_grad():
n_sample = 4*num_cls
for w_i, w in enumerate(ws):
x1, xis = ddpm_model.sample(n_sample, (1, 28, 28), num_cls,w)
fig, ax = plt.subplots(nrows = n_sample // num_cls, ncols = num_cls, sharex = True, sharey = True, figsize = (10, 4))
def animate_plot(i, xis):
plots = []
for row in range(n_sample // num_cls):
for col in range(num_cls):
ax[row, col].clear()
ax[row, col].set_xticks([])
ax[row, col].set_yticks([])
plots.append(ax[row, col].imshow(-xis[i, (row*num_cls) + col, 0], cmap = 'gray', vmin = (-xis[i]).min(), vmax = (-xis[i]).max()))
return plots
ani = FuncAnimation(fig, animate_plot, fargs = [xis], interval = 200, blit = False, repeat = True, frames = xis.shape[0])
ani.save(f'{save_dir}/epoch_{epoch}.gif', dpi = 100, writer = PillowWriter(fps = 5))
print('GIF Saved!')
torch.save(ddpm_model.state_dict(), os.path.join(save_dir, f'ddpm.pth'))
torch.save(unet.state_dict(), os.path.join(save_dir, f'unet.pth'))
def main():
num_cls = 10
num_epochs = 20
save_dir = '/content/drive/MyDrive/Diffusion'
unet = UNet(1, 128, num_cls).cuda()
ddpm_model = DDPM(unet, (1e-4, 0.02)).cuda()
#unet.load_state_dict(torch.load('/content/drive/MyDrive/Diffusion/unet.pth'))
#ddpm_model.load_state_dict(torch.load('/content/drive/MyDrive/Diffusion/ddpm.pth'))
tr = T.Compose([T.ToTensor()])
dataset = tv.datasets.MNIST('/content/data', True, transform = tr, download = True)
loader = DataLoader(dataset, batch_size = 64, shuffle = True, num_workers = 0)
opt = torch.optim.Adam(list(ddpm_model.parameters()) + list(unet.parameters()), lr = 1e-4)
criterion = nn.MSELoss()
scaler = torch.cuda.amp.grad_scaler.GradScaler()
ws = [0.0, 0.5, 1.0]
for epoch in range(num_epochs):
train(unet, ddpm_model, loader, opt, criterion, scaler, num_cls, save_dir, ws, epoch, num_epochs)
if __name__ == '__main__':
#wandb.init(project = 'MinDiffusion')
main()