-
Notifications
You must be signed in to change notification settings - Fork 0
/
train_engine.py
125 lines (103 loc) · 5.62 KB
/
train_engine.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import math
from typing import Iterable
import torch
import torch.nn as nn
import utils.utils as utils
def train_one_epoch(model: torch.nn.Module, tokenizer: torch.nn.Module,
data_loader: Iterable, optimizer: torch.optim.Optimizer,
device: torch.device, epoch: int, loss_scaler, max_norm: float = 0,
log_writer=None, lr_scheduler=None, start_steps=None,
lr_schedule_values=None, wd_schedule_values=None):
model.train()
metric_logger = utils.MetricLogger(delimiter=" ")
metric_logger.add_meter('lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
metric_logger.add_meter('min_lr', utils.SmoothedValue(window_size=1, fmt='{value:.6f}'))
header = 'Epoch: [{}]'.format(epoch)
print_freq = 10
if epoch >= 100: # dynamic masking
data_loader.dataset.transform.sampling_by_weights = True
for step, (batch, target) in enumerate(metric_logger.log_every(data_loader, print_freq, header)):
# assign learning rate & weight decay for each step
it = start_steps + step # global training iteration
if lr_schedule_values is not None or wd_schedule_values is not None:
for i, param_group in enumerate(optimizer.param_groups):
if lr_schedule_values is not None:
param_group["lr"] = lr_schedule_values[it] * param_group["lr_scale"]
if wd_schedule_values is not None and param_group["weight_decay"] > 0:
param_group["weight_decay"] = wd_schedule_values[it]
# (N, 3, 224, 224); (N, 3, 112, 112); (N, 14, 14)
if epoch >= 100:
images, token_images, bool_masked_pos, mask_weights = batch
mask_weights = mask_weights.to(device, non_blocking=True)
else:
images, token_images, bool_masked_pos = batch
token_images = token_images.to(device, non_blocking=True)
images = images.to(device, non_blocking=True)
bool_masked_pos = bool_masked_pos.to(device, non_blocking=True)
with torch.no_grad():
# get visual tokens, (N, 196)
input_ids = tokenizer.get_codebook_indices(token_images).flatten(1)
bool_masked_pos = bool_masked_pos.to(torch.bool)
labels = input_ids[bool_masked_pos]
with torch.cuda.amp.autocast():
# outputs: (mask_N, 8192); labels: (mask_N)
outputs = model(images, bool_masked_pos=bool_masked_pos, return_all_tokens=False)
uncertainty = nn.CrossEntropyLoss(reduction='none')(input=outputs, target=labels)
if epoch >= 100:
loss = uncertainty * mask_weights
else:
loss = uncertainty
loss = torch.mean(loss)
# updating sampling weights
class_name = data_loader.dataset.transform.target_to_class_name[target.item()]
weights = data_loader.dataset.transform.sampling_weights[class_name]
counts = data_loader.dataset.transform.sampling_counts[class_name]
uncertainty = uncertainty.detach().cpu()
weights[bool_masked_pos[0]] = (weights[bool_masked_pos[0]] * counts[bool_masked_pos[0]] + uncertainty) / (counts[bool_masked_pos[0]] + 1)
counts[bool_masked_pos[0]] += 1
data_loader.dataset.transform.sampling_weights[class_name] = weights
data_loader.dataset.transform.sampling_counts[class_name] = counts
loss_value = loss.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
#sys.exit(1)
optimizer.zero_grad()
# this attribute is added by timm on one optimizer (adahessian)
is_second_order = hasattr(optimizer, 'is_second_order') and optimizer.is_second_order
grad_norm = loss_scaler(loss, optimizer, clip_grad=max_norm,
parameters=model.parameters(), create_graph=is_second_order)
loss_scale_value = loss_scaler.state_dict()["scale"]
torch.cuda.synchronize()
mlm_acc = (outputs.max(-1)[1] == labels).float().mean().item()
metric_logger.update(mlm_acc=mlm_acc)
if log_writer is not None:
log_writer.update(mlm_acc=mlm_acc, head="loss")
metric_logger.update(loss=loss_value)
metric_logger.update(loss_scale=loss_scale_value)
min_lr = 10.
max_lr = 0.
for group in optimizer.param_groups:
min_lr = min(min_lr, group["lr"])
max_lr = max(max_lr, group["lr"])
metric_logger.update(lr=max_lr)
metric_logger.update(min_lr=min_lr)
weight_decay_value = None
for group in optimizer.param_groups:
if group["weight_decay"] > 0:
weight_decay_value = group["weight_decay"]
metric_logger.update(weight_decay=weight_decay_value)
metric_logger.update(grad_norm=grad_norm)
if log_writer is not None:
log_writer.update(loss=loss_value, head="loss")
log_writer.update(loss_scale=loss_scale_value, head="opt")
log_writer.update(lr=max_lr, head="opt")
log_writer.update(min_lr=min_lr, head="opt")
log_writer.update(weight_decay=weight_decay_value, head="opt")
log_writer.update(grad_norm=grad_norm, head="opt")
log_writer.set_step()
if lr_scheduler is not None:
lr_scheduler.step_update(start_steps + step)
# gather the stats from all processes
metric_logger.synchronize_between_processes()
print("Averaged stats:", metric_logger)
return {k: meter.global_avg for k, meter in metric_logger.meters.items()}