This repository has been archived by the owner on Nov 7, 2019. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 3
/
factor.f90
82 lines (65 loc) · 1.84 KB
/
factor.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
!=======================================================================
! This is part of the 2DECOMP&FFT library
!
! 2DECOMP&FFT is a software framework for general-purpose 2D (pencil)
! decomposition. It also implements a highly scalable distributed
! three-dimensional Fast Fourier Transform (FFT).
!
! Copyright (C) 2009-2011 Ning Li, the Numerical Algorithms Group (NAG)
!
!=======================================================================
! A few utility routines to find factors of integer numbers
subroutine findfactor(num, factors, nfact)
implicit none
integer, intent(IN) :: num
integer, intent(OUT), dimension(*) :: factors
integer, intent(OUT) :: nfact
integer :: i, m
! find the factors <= sqrt(num)
m = int(sqrt(real(num)))
nfact = 1
do i=1,m
if (num/i*i == num) then
factors(nfact) = i
nfact = nfact + 1
end if
end do
nfact = nfact - 1
! derive those > sqrt(num)
if (factors(nfact)**2/=num) then
do i=nfact+1, 2*nfact
factors(i) = num / factors(2*nfact-i+1)
end do
nfact = nfact * 2
else
do i=nfact+1, 2*nfact-1
factors(i) = num / factors(2*nfact-i)
end do
nfact = nfact * 2 - 1
endif
return
end subroutine findfactor
subroutine primefactors(num, factors, nfact)
implicit none
integer, intent(IN) :: num
integer, intent(OUT), dimension(*) :: factors
integer, intent(INOUT) :: nfact
integer :: i, n
i = 2
nfact = 1
n = num
do
if (mod(n,i) == 0) then
factors(nfact) = i
nfact = nfact + 1
n = n / i
else
i = i + 1
end if
if (n == 1) then
nfact = nfact - 1
exit
end if
end do
return
end subroutine primefactors