forked from jinweiluo/BERT4Rec_AC
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathml1m.py
193 lines (165 loc) · 7.79 KB
/
ml1m.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""BERT pretraining."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import argparse
import re
import paddle
import paddle.nn as nn
import paddle.fluid as fluid
import six
import pickle
from bert4rec.dataset import DataReader
from bert4rec.bert4rec_ac import BertModel, BertConfig
from evaluate import *
def str2bool(v):
return v.lower() in ("true", "t", "1")
class ArgumentGroup(object):
def __init__(self, parser, title, des):
self._group = parser.add_argument_group(title=title, description=des)
def add_arg(self, name, type, default, help, **kwargs):
type = str2bool if type == bool else type
self._group.add_argument(
"--" + name,
default=default,
type=type,
help=help + ' Default: %(default)s.',
**kwargs)
def print_arguments(args):
print('----------- Configuration Arguments -----------')
for arg, value in sorted(six.iteritems(vars(args))):
print('%s: %s' % (arg, value))
print('------------------------------------------------')
parser = argparse.ArgumentParser(__doc__)
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("bert_config_path", str, "./bert_train/bert_config_ml-1m_128.json",
"Path to the json file for bert model config.")
train_g = ArgumentGroup(parser, "training", "training options")
train_g.add_arg("epoch", int, 100, "Number of epoch for training")
train_g.add_arg("learning_rate", float, 0.001, "Learning rate")
train_g.add_arg("weight_decay", float, 0.01, "Weight decay rate for L2 regularizer.")
train_g.add_arg("num_train_steps", int, 800000, "Total steps to perform pretraining.")
train_g.add_arg("warmup_steps", int, 1000, "Total steps to perform warmup when pretraining.")
train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.")
data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("data_name", str, "ml-1m", "Path to training data.")
data_g.add_arg("data_dir", str, "./bert_train/data/ml-1m-train.txt", "Path to training data.")
data_g.add_arg("test_set_dir", str, "./bert_train/data/ml-1m-test.txt", "Path to test data.")
data_g.add_arg("vocab_path", str, "./bert_train/data/ml-1m2.0.2.vocab", "Vocabulary path.")
data_g.add_arg("candidate_path", str, "./bert_train/data/ml-1m.candidate", "candidate path.")
data_g.add_arg("max_seq_len", int, 200, "The maximum length of item sequence")
data_g.add_arg("batch_size", int, 256, "The batch size of data")
args = parser.parse_args()
def main(args):
print("Start to train Bert4rec")
bert_config = BertConfig(args.bert_config_path)
bert_config.print_config()
BertRec = BertModel(config=bert_config)
data_path = args.data_dir
train_dataset = DataReader(
data_path=data_path,
batch_size=args.batch_size,
max_len=args.max_seq_len,
)
train_loader = train_dataset.get_samples()
val_dataset = DataReader(
data_path=args.test_set_dir,
batch_size=args.batch_size,
max_len=args.max_seq_len,
)
val_loader = val_dataset.get_samples()
# Loading candidate data
print('load candidate from :' + args.candidate_path)
with open(args.candidate_path, 'rb') as input_file:
candidate = pickle.load(input_file)
epochs = args.epoch
total_steps = 0
def apply_decay_param(param_name):
for r in ["layer_norm", "b_0"]:
if re.search(r, param_name) is not None:
return False
return True
for epoch in range(epochs):
cand_list = candidate
BertRec.train()
if total_steps < args.warmup_steps:
scheduler = paddle.optimizer.lr.LinearWarmup(
learning_rate=args.learning_rate,
warmup_steps=args.warmup_steps,
start_lr=0,
end_lr=args.learning_rate,
last_epoch=total_steps,
verbose=False)
else:
scheduler = paddle.optimizer.lr.PolynomialDecay(
learning_rate=args.learning_rate,
decay_steps=args.num_train_steps,
end_lr=0,
last_epoch=total_steps - args.warmup_steps,
verbose=False)
optim = paddle.optimizer.AdamW(
learning_rate=scheduler,
weight_decay=args.weight_decay,
apply_decay_param_fun=apply_decay_param,
grad_clip=nn.ClipGradByGlobalNorm(clip_norm=5.0),
parameters=BertRec.parameters()
)
total_loss = 0
batch_id = 0
for batch_id, data in enumerate(
train_loader()):
src_ids, pos_ids, input_mask, mask_pos, mask_label = data
src_ids = paddle.to_tensor(src_ids, dtype='int32')
pos_ids = paddle.to_tensor(pos_ids, dtype='int32')
input_mask = paddle.to_tensor(input_mask, dtype='int32')
mask_pos = paddle.to_tensor(mask_pos, dtype='int32')
mask_label = paddle.to_tensor(mask_label, dtype='int64')
sent_ids = paddle.zeros(shape=[args.batch_size, args.max_seq_len], dtype='int32')
fc_out = BertRec(src_ids, pos_ids, sent_ids, input_mask, mask_pos)
mask_lm_loss, lm_softmax = nn.functional.softmax_with_cross_entropy(
logits=fc_out, label=mask_label, return_softmax=True)
mean_mask_lm_loss = paddle.mean(mask_lm_loss)
loss = mean_mask_lm_loss
total_loss += loss.numpy()
loss.backward()
optim.step()
optim.clear_grad()
scheduler.step()
total_steps += 1
print("epoch: {}, aver loss is: {}".format(epoch, total_loss / (1 + batch_id)))
BertRec.eval()
results = [0., 0., 0.]
num_user = 0
for batch_id, data in enumerate(val_loader()):
pred_ratings = []
src_ids, pos_ids, input_mask, mask_pos, mask_label = data
src_ids = paddle.to_tensor(src_ids, dtype='int32')
pos_ids = paddle.to_tensor(pos_ids, dtype='int32')
input_mask = paddle.to_tensor(input_mask, dtype='int32')
mask_pos = paddle.to_tensor(mask_pos, dtype='int32')
sent_ids = paddle.zeros(shape=[args.batch_size, args.max_seq_len], dtype='int32')
fc_out = BertRec(src_ids, pos_ids, sent_ids, input_mask, mask_pos)
for i in range(args.batch_size):
pred_ratings.append(fluid.layers.gather(fc_out[i], paddle.to_tensor(cand_list[i])).numpy())
cand_list = cand_list[args.batch_size:]
evaluate_rec_ndcg_mrr_batch(pred_ratings, results, top_k=10, row_target_position=0)
num_user += args.batch_size
rec, ndcg, mrr = results[0] / num_user, results[1] / num_user, results[2] / num_user
print("epoch: %4d, HR@10: %.6f, NDCG@10: %.6f, MRR: %.6f" % (
epoch, rec, ndcg, mrr), end='\n')
if __name__ == '__main__':
print_arguments(args)
main(args)