e.g. ERBB3 p.S846I
In this version the pVACseq analysis is focused on the variant only, to cover the use case where we may not even have access to tumor normal exome and tumor RNAseq data (and thus have no BAMs, no phased VCF, etc.).
Step 1. Use the ClinGen Allele Registry to resolve it to HGVS
This works out to:
NC_000012.12:g.56097861G>T / NM_001982.4:c.2537G>T / NP_001973.2:p.Ser846Ile NC_000012.12:g.56097861G>T / ENST00000267101.8:c.2537G>T / ENSP00000267101.4:p.Ser846Ile
Create a simple text file: erbb3-variant-hgvs.txt with a single HGVS g. entry: NC_000012.12:g.56097861G>T
docker: "mgibio/vep_helper-cwl:vep_105.0_v1"
isub -m 64 -n 8 --preserve false -i 'mgibio/vep_helper-cwl:vep_105.0_v1'
Using the docker image above, annotate the variant with Ensembl VEP as follows
/usr/bin/perl -I /opt/lib/perl/VEP/Plugins /usr/bin/variant_effect_predictor.pl \
--format hgvs \
--vcf \
--fork 4 \
--term SO \
--transcript_version \
--cache \
--symbol \
-o annotated.vcf \
-i /storage1/fs1/mgriffit/Active/JLF_MCDB/cases/mcdb022/erbb3/erbb3-pvacseq/erbb3-variant-hgvs.txt \
--synonyms /storage1/fs1/mgriffit/Active/griffithlab/pipeline_test/malachi/refs_backup/May-2023/griffith-lab-workflow-inputs/human_GRCh38_ens105/reference_genome/chromAlias.ensembl.txt \
--flag_pick \
--dir /storage1/fs1/mgriffit/Active/griffithlab/pipeline_test/malachi/refs_backup/May-2023/griffith-lab-workflow-inputs/human_GRCh38_ens105/vep_cache \
--fasta /storage1/fs1/mgriffit/Active/griffithlab/pipeline_test/malachi/refs_backup/May-2023/griffith-lab-workflow-inputs/human_GRCh38_ens105/aligner_indices/bwamem2_2.2.1/all_sequences.fa \
--check_existing \
--plugin Frameshift --plugin Wildtype \
--everything \
--assembly GRCh38 \
--cache_version 105 \
--species homo_sapiens
isub -m 64 -n 8 --preserve false -i 'griffithlab/vatools:latest'
Using the docker image above, use VA tools to add genotype columns to the VCF
vcf-genotype-annotator /storage1/fs1/mgriffit/Active/JLF_MCDB/cases/mcdb022/erbb3/erbb3-pvacseq/annotated.vcf JLF-100-016-tumor 0/1 -o /storage1/fs1/mgriffit/Active/JLF_MCDB/cases/mcdb022/erbb3/erbb3-pvacseq/annotated.genotyped.1.vcf
vcf-genotype-annotator /storage1/fs1/mgriffit/Active/JLF_MCDB/cases/mcdb022/erbb3/erbb3-pvacseq/annotated.genotyped.1.vcf JLF-100-016-normal 0/0 -o /storage1/fs1/mgriffit/Active/JLF_MCDB/cases/mcdb022/erbb3/erbb3-pvacseq/annotated.genotyped.2.vcf
isub -m 64 -n 8 --preserve false -i 'susannakiwala/pvactools:latest'
Using the docker image above, use pVACseq to perform neoantigen analysis on the VCF
export HLA_ALLELES="HLA-A*01:01,HLA-A*02:13,HLA-B*08:01,HLA-B*57:03,HLA-C*07:01,HLA-C*06:02"
export PEPTIDE_FASTA=/storage1/fs1/gillandersw/Active/Project_0001_Clinical_Trials/annotation_files_for_review/Homo_sapiens.GRCh38.pep.all.fa.gz
pvacseq run /storage1/fs1/mgriffit/Active/JLF_MCDB/cases/mcdb022/erbb3/erbb3-pvacseq/annotated.genotyped.2.vcf \
JLF-100-016-tumor \
$HLA_ALLELES \
all /storage1/fs1/mgriffit/Active/JLF_MCDB/cases/mcdb022/erbb3/erbb3-pvacseq/pvacseq/ \
-e1 8,9,10,11 -e2 12,13,14,15,16,17,18 --iedb-install-directory /opt/iedb \
-b 500 -m median -k -t 8 --run-reference-proteome-similarity \
--aggregate-inclusion-binding-threshold 1500 \
--peptide-fasta $PEPTIDE_FASTA \
-d 100 --normal-sample-name JLF-100-016-normal --problematic-amino-acids C \
--allele-specific-anchors \
--maximum-transcript-support-level 1 --pass-only