-
Notifications
You must be signed in to change notification settings - Fork 46
/
temporal_train_data.py
241 lines (197 loc) · 8.25 KB
/
temporal_train_data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
"""
Class for managing our data.
"""
import csv
import numpy as np
import os.path
import random
import threading
from keras.utils import to_categorical
import cv2
#from keras.preprocessing import image
class threadsafe_iterator:
def __init__(self, iterator):
self.iterator = iterator
self.lock = threading.Lock()
def __iter__(self):
return self
def __next__(self):
with self.lock:
return next(self.iterator)
def threadsafe_generator(func):
"""Decorator"""
def gen(*a, **kw):
return threadsafe_iterator(func(*a, **kw))
return gen
class DataSet():
def __init__(self, num_of_snip=1, opt_flow_len=10, image_shape=(224, 224), original_image_shape=(341, 256), class_limit=None):
"""Constructor.
opt_flow_len = (int) the number of optical flow frames to consider
class_limit = (int) number of classes to limit the data to.
None = no limit.
"""
self.opt_flow_len = opt_flow_len
self.num_of_snip = num_of_snip
self.class_limit = class_limit
self.image_shape = image_shape
self.original_image_shape = original_image_shape
self.opt_flow_path = os.path.join('/data', 'opt_flow')
# Get the data.
self.data_list = self.get_data_list()
# Get the classes.
self.classes = self.get_classes()
# Now do some minor data cleaning
self.data_list = self.clean_data_list()
@staticmethod
def get_data_list():
"""Load our data list from file."""
with open(os.path.join('/data', 'data_list.csv'), 'r') as fin:
reader = csv.reader(fin)
data_list = list(reader)
return data_list
def clean_data_list(self):
data_list_clean = []
for item in self.data_list:
if item[1] in self.classes:
data_list_clean.append(item)
return data_list_clean
def get_classes(self):
"""Extract the classes from our data, '\n'. If we want to limit them,
only return the classes we need."""
classes = []
for item in self.data_list:
if item[1] not in classes:
classes.append(item[1])
# Sort them.
classes = sorted(classes)
# Return.
if self.class_limit is not None:
return classes[:self.class_limit]
else:
return classes
def get_class_one_hot(self, class_str):
"""Given a class as a string, return its number in the classes
list. This lets us encode and one-hot it for training."""
# Encode it first.
label_encoded = self.classes.index(class_str)
# Now one-hot it.
label_hot = to_categorical(label_encoded, len(self.classes))
assert label_hot.shape[0] == len(self.classes)
return label_hot
def split_train_test(self):
"""Split the data into train and test groups."""
train = []
test = []
for item in self.data_list:
if item[0] == 'train':
train.append(item)
else:
test.append(item)
return train, test
@threadsafe_generator
def stack_generator(self, batch_size, train_test, name_str="N/D"):
"""Return a generator of optical frame stacks that we can use to train on. There are
a couple different things we can return:
"""
# Get the right dataset for the generator.
train, test = self.split_train_test()
data_list = train if train_test == 'train' else test
idx = 0
print("\nCreating %s generator with %d samples.\n" % (train_test,
len(data_list)))
while 1:
idx += 1
print("Generator yielding batch No.%d" % idx)
if(train_test == 'test'):
print("Validating for job: %s" % name_str)
X, y = [], []
# Generate batch_size samples.
for _ in range(batch_size):
# Reset to be safe.
stack = []
# Get a random sample.
row = random.choice(data_list)
# Get the stacked optical flows from disk.
stack = self.get_stacked_opt_flows(row, train_test)
X.append(stack)
y.append(self.get_class_one_hot(row[1]))
X = np.array(X)
y = np.array(y)
y = np.squeeze(y)
yield X, y
def get_stacked_opt_flows(self, row, train_test, crop='corner', val_aug='center'):
# crop options for training: corner, random
# augmentation options for testing: resize, center
opt_flow_stack = []
opt_flow_dir_x = os.path.join(self.opt_flow_path, 'u', row[2])
opt_flow_dir_y = os.path.join(self.opt_flow_path, 'v', row[2])
# spatial parameters
if train_test == 'train':
if crop == 'random':
# crop at center and four corners randomly for training
left, top = random.choice([[0, 0], [0, self.original_image_shape[1] - self.image_shape[1]], [self.original_image_shape[0] - self.image_shape[0], 0], [self.original_image_shape[0] - self.image_shape[0], self.original_image_shape[1] - self.image_shape[1]], [int((self.original_image_shape[0] - self.image_shape[0]) * 0.5), int((self.original_image_shape[1] - self.image_shape[1]) * 0.5)]])
else:
# random crop for training set
left = int((self.original_image_shape[0] - self.image_shape[0]) * random.random())
top = int((self.original_image_shape[1] - self.image_shape[1]) * random.random())
else:
# crop at center for validation
left = int((self.original_image_shape[0] - self.image_shape[0]) * 0.5)
top = int((self.original_image_shape[1] - self.image_shape[1]) * 0.5)
right = left + self.image_shape[0]
bottom = top + self.image_shape[1]
# temporal parameters
total_frames = len(os.listdir(opt_flow_dir_x))
win_len = (total_frames - self.opt_flow_len) // self.num_of_snip # starting frame selection window length
if train_test == 'train':
start_frame = int(random.random() * win_len) + 1
else:
start_frame = int(0.5 * win_len) + 1
frames = [] # selected optical flow frames
for i in range(self.num_of_snip):
frames += range(start_frame + self.opt_flow_len * i, start_frame + self.opt_flow_len * (i + 1))
if train_test == 'train' and random.random() > 0.5:
flip = True
else:
flip = False
# loop over frames
for i_frame in frames:
# horizontal components
img = None # reset to be safe
img = cv2.imread(opt_flow_dir_x + '/frame' + "%06d"%(i_frame) + '.jpg', 0)
print(opt_flow_dir_x + '/frame' + "%06d"%(i_frame) + '.jpg')
img = np.array(img)
# mean substraction
img = img - np.mean(img)
if train_test == 'train' or val_aug == 'center':
# crop
img = img[left : right, top : bottom]
else:
#resize
img = cv2.resize(img, self.image_shape)
img = img / 255. # normalize pixels
if flip:
img = -img
opt_flow_stack.append(img)
# vertical components
img2 = None # reset to be safe
img2 = cv2.imread(opt_flow_dir_y + '/frame' + "%06d"%(i_frame) + '.jpg', 0)
# mean substraction
img2 = np.array(img2)
img2 = np.swapaxes(img2, 0, 1)
img2 = img2 - np.mean(img2)
if train_test == 'train' or val_aug == 'center':
# crop
img2 = img2[left : right, top : bottom]
else:
#resize
img2 = cv2.resize(img2, self.image_shape)
img2 = img2 / 255. # normalize pixels
opt_flow_stack.append(img2)
opt_flow_stack = np.array(opt_flow_stack)
opt_flow_stack = np.swapaxes(opt_flow_stack, 0, 1)
opt_flow_stack = np.swapaxes(opt_flow_stack, 1, 2)
# random horizontal flip for training sets
if flip:
opt_flow_stack = np.flip(opt_flow_stack, 0)
return opt_flow_stack