-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathmodel.py
61 lines (47 loc) · 2.94 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
from keras.layers import *
from keras.models import Model
from keras import backend as K
from keras.engine.topology import Layer, InputSpec
from keras import initializers
from keras.optimizers import *
from const import *
import keras
class ComputeMasking(keras.layers.Layer):
def __init__(self, maskvalue=0,**kwargs):
self.maskvalue=maskvalue
super(ComputeMasking, self).__init__(**kwargs)
def call(self, inputs, **kwargs):
mask = K.not_equal(inputs, self.maskvalue)
return K.cast(mask, K.floatx())*(-99)
def compute_output_shape(self, input_shape):
return input_shape
def get_model(Otraining,hidden=HIDDEN,dropout=DROP):
userembedding_layer = Embedding(Otraining.shape[0]+3, hidden, trainable=True)
itemembedding_layer = Embedding(Otraining.shape[1]+3, hidden, trainable=True)
userid_input = Input(shape=(1,), dtype='int32')
itemid_input = Input(shape=(1,), dtype='int32')
ui_input = Input(shape=(HIS_LEN,), dtype='int32')
neighbor_embedding_input = Input(shape=(HIS_LEN,NEIGHBOR_LEN,hidden), dtype='float32')
mask_neighbor = Lambda(lambda x:K.cast(K.cast(K.sum(x,axis=-1),'bool'),'float32'))(neighbor_embedding_input)
neighbor_embeddings = TimeDistributed(TimeDistributed(Dense(hidden)))(neighbor_embedding_input)
uiemb = Dense(hidden,activation='sigmoid')(itemembedding_layer(ui_input))
uiembrepeat = Lambda(lambda x :K.repeat_elements(K.expand_dims(x,axis=2),NEIGHBOR_LEN,axis=2))(uiemb)
attention_gat = Reshape((HIS_LEN,NEIGHBOR_LEN))(LeakyReLU()(TimeDistributed(TimeDistributed(Dense(1)))(concatenate([uiembrepeat,neighbor_embeddings]))))
attention_gat = Lambda(lambda x:x[0]+(1-x[1])*(-99))([attention_gat,mask_neighbor])
agg_neighbor_embeddings = Lambda(lambda x:K.sum(K.repeat_elements(K.expand_dims(x[0],axis=3),hidden,axis=3)*x[1],axis=-2))([attention_gat,neighbor_embeddings])
uiemb_agg = Dense(hidden)(concatenate([agg_neighbor_embeddings,uiemb]))
uemb = Dense(hidden,activation='sigmoid')(Flatten()(userembedding_layer(userid_input)))
uemb = Dropout(dropout)(uemb)
iemb = Dense(hidden,activation='sigmoid')(Flatten()(itemembedding_layer(itemid_input)))
iemb = Dropout(dropout)(iemb)
masker = ComputeMasking(Otraining.shape[1]+2)(ui_input)
uembrepeat = Lambda(lambda x :K.repeat_elements(K.expand_dims(x,axis=1),HIS_LEN,axis=1))(uemb)
attention = Flatten()(LeakyReLU()(Dense(1)(concatenate([uembrepeat,uiemb_agg]))))
attention = add([attention,masker])
attention_weight = Activation('softmax')(attention)
uemb_g = Dot((1, 1))([uiemb, attention_weight])
uemb_g = Dense(hidden)(concatenate([uemb_g, uemb]))
out = Dense(1,activation='sigmoid')(concatenate([uemb_g, iemb]))
model = Model([userid_input,itemid_input,ui_input,neighbor_embedding_input],out)
model.compile(loss=['mse'], optimizer=SGD(lr=LR,clipnorm=CLIP), metrics=['mse'])
return model,userembedding_layer,itemembedding_layer